Dependency Injection using

s|PICO
90 I:c’t::untainer

By
Subbu Ramanathan

Presented at
The Great Lakes Software Symposium
Chicago, IL — October 3, 2004

Agenda
S

The need for Pico Container
Dependency Injection — What & How?
Pico Container basics

Container Hierarchies

Life cycle support in Pico Container
NanoContainer

NanoWar

Comparison with Spring
Comparison with Avalon

EJB3 ?

Conclusion

spider
Subbu Ramanathan [-2SIE

Coupling
"

e Best practice - create loosely coupled
components

- High Level Modules should not depend upon low
level modules and vice-versa. Both should
depend on abstractions.

— Abstractions should not depend on details.
Details must depend on abstractions.

spider
Subbu Ramanathan [-2SIE

Achieve loose coupling
S

e This goal must be accomplished
- With minimal effort
- Using a least intrusive mechanism
— Without adverse functional implications

spider
Subbu Ramanathan [-2SIE

An Example

Subbu Ramanathan

GOF Solution — Factory Pattern
-

e Use a Factory class to instantiate the component
you need

e Only the Factory knows about the concrete class, not
your application

e Pros
— Helps to resolve tight coupling

e Cons

— Intrusive: Components need to be requested explicitly

- Need recompiling to change specific component in
application

spider
Subbu Ramanathan [-2SIE

Alternative - Hollywood Principal
—

e aka “don’t call us, we'll call you”
— Components should not be explicitly requested
— Components will be provided as needed

e aka Inversion of Control

spider
Subbu Ramanathan [-2SIE

Dependency Injection

e When loC is about looking up plugin
implementation, Martin Fowler calls it
Dependency injection

e Dependency injection is a term used to
resolve component dependencies by
injecting an instantiated component to satisfy
a dependency

spider
Subbu Ramanathan [-2SIE

Forms of Dependency Injection
S

e Constructor Injection with Pico Container

e Setter Injection with Spring

e Interface Injection with Avalon (Merlin)

Subbu Ramanathan

Constructor Injection
/"

e Constructor Injection is a Dependency
Injection variant where an object gets all its
dependencies via the constructor.

spider
Subbu Ramanathan [-2SIE

Example Changed For Pico Container
]

e Pico Container uses a constructor to decide
now to inject a finder implementation into the
Ister class.

e For this to work, the movie lister class needs
to declare a constructor that includes
everything it needs injected.

spider
Subbu Ramanathan [-2SIE

Example Using Pico Container
—

Subbu Ramanathan

Constructor Injection Advantages
"

e |t makes a strong dependency contract.
Setting is atomic in a sense that either all or
none of the dependencies are set and that it
can occur once and only once

e Dependency is easily identifiable

e A dependency may be made immutable by
making the dependency reference final

spider
Subbu Ramanathan [-2SIE

What is Pico Container?
S

e Light weight container

e Not a replacement for J2EE

e Non-intrusive. Components can be POJOs

e Provides component’s life cycle management

e Extensible

e 50K jar that depends only on JDK1.3

spider
Subbu Ramanathan [-2SIE

Singleton vs. Pico
—

Singleton provides one instance with global visibility
Singleton causes hard-wired dependency
Singletons are hard to test with Mock objects

Container hierarchies in Pico provide fine grained
control over a component’s visibility scope

e A container (and its registered components) can get
access to components registered in a parent
container, but not vice-versa.

spider
Subbu Ramanathan [-2SIE

Container Hierarchies

spider
Subbu Ramanathan [-2SIE

Lifecycle support in Pico
-

e Lifecycle involves post creation life of a component
e Useful when tree of component dependencies exist

e A “lifecycle method” invoked on parent container
cascades through container components & down to
child containers

e A ‘“lifecycle method” invoked on a child container
does NOT cascade up through parents

e Child containers must register as a component with
parent container for lifecycle support to work

spider
Subbu Ramanathan [-2SIE

Lifecycle Interfaces
-

e Pico provides Startable & Disposable
interfaces

e Startable two methods: start() and stop()
e Disposable has one method: dispose()

e |t is okay if some or none of the components
iImplement these lifecycle interfaces

spider
Subbu Ramanathan [-2SIE

Example Using Lifecycle

spider
Subbu Ramanathan [-2SIE

Lifecycle Appropriateness
]
e Developing unattended services

e A single point of control for multiple
cascaded operations

e [ransaction processing

Subbu Ramanathan

Custom Lifecycle
—

e Instead of mandating the default lifecycle
interfaces, Pico allows for development of
custom Lifecycle support

e This functionality has been moved into the
NanoContainer

spider
Subbu Ramanathan [-2SIE

Custom Lifecycle Code
"

/| Define the Lifecycle interface
public interface XTransaction {
public void commit();

}

/| Register Lifecycle implementer
PicoContainer pico = new DefaultPicoContainer();
Pico.registerComponentimplementation(XTransactionlmpl.class);

/] Invoke Lifecycle method

XTransaction xObj = (XTransaction) Multicaster.object(pico, true,
new StandardProxyFactory());

xObj.commit();

spider
Subbu Ramanathan [-2SIE

NanoContainer
/7

e Is a script enabled front-end for Pico Container
e Register components through a script

e Supports
- Groovy
- BeanShell
— Jython
— Rhino JavaScript
- XML

spider
Subbu Ramanathan [-2SIE

Example Using NanoContainer

Subbu Ramanathan

NanoWar
/7]

e NanoWar allows to embed NanoContainer within a
Java Servlet container

e It is non-intrusively activated in a Web app via a
Servlet container listener

e Creates PicoContainer instances at the application,
session, and request levels

e These are created when web application starts,
session is created, and request is created
respectively

spider
Subbu Ramanathan [-2SIE

NanoWar — Pico Containers
-

Web app scope
(javax.serviet. ServietContext)

Session scope
(javax.servlet, http. HttpSession)

Request scope
(javax.servlet, ServietRequest)

spider
Subbu Ramanathan [-2SIE

NanoWar & WebWork

.
e The NanoWar — WebWork integration kit
allows WebWork actions to be PicoContainer
components

e Provides for decoupling Actions from
Persistence Layer/Communication Layer

e Allows for easier unit testing of Actions
outside of the web application using mock
objects

spider
Subbu Ramanathan [-2SIE

Example Using NanoWar - WebWork

spider
Subbu Ramanathan [-2SIE

Nanocontainer & Persistence
o

e Nanocontainer-Hibernate
e Nanocontainer-Jaxor

Subbu Ramanathan

Pico Container & Jaxor
-

e Jaxor is an OR mapping tool which
generates the persistence classes from XML
based entity definitions

e Code generation is done using Velocity
templates

e Jaxor can use Pico Container to register all
concrete classes

spider
Subbu Ramanathan [-2SIE

Jaxor Classes
g

e Implementations of the interfaces that
JaxorContextlmpl depends on

e JaxorContainer provides lifecycle support by
implementing Pico’s Stoppable

e When the Container is Stopped, the Context
IS ended and db operations can be
committed

spider
Subbu Ramanathan [-2SIE

Jaxor Code

spider
Subbu Ramanathan [-2SIE

Other Pico Features
-

e Pico container also supports Setter Injection
using SetterlnjectionComponentAdapter
class

e But, Pico really recommends Constructor
Injection for obvious reasons

spider
Subbu Ramanathan [-2SIE

Setter Injection using Spring
—

e Spring framework uses a BeanFactory that stores
iInformation about all the beans used by the
application

e The BeanFactory supplies the application with the
needed beans when requested

e XMLBeanFactory is a BeanFactory that reads bean
definitions from an XML file

e Beans can be defined as Singletons or not
e Spring can resolve bean dependencies

spider
Subbu Ramanathan [-2SIE

Spring Configuration

spider
Subbu Ramanathan [-2SIE

Spring Code

spider
Subbu Ramanathan [-2SIE

Spring — Constructor Injection

]
e Configuration XML

<bean id="hibernateClinic” class="“samples.HibernatePetClinic">
<constructor-arg index=“0">
<ref bean="“sessionFactory"/>
</constructor-arg>
</bean>

e Java Code

public class HibernatePetClinic implements PetClinic {
public HibernatePetClinic(SessionFactory factory) {
this.sessionFactory = factory;
}

}

spider
Subbu Ramanathan [-2SIE

Interface Injection
-

e Injection is done through an interface

e The interface will define the injection method
and the implementation class has to
implement this interface and provide
concrete implementation for the injection
method.

e Avalon provides Interface Injection

spider
Subbu Ramanathan [-2SIE

Avalon Code

spider
Subbu Ramanathan [-2SIE

Dependency Injection with EJB3
-

@Session public class MyBean {
private DataSource customerDB;

@Inject private void setCustomerDB(DataSource customerDB) {
this.customerDB = customerDB;

}

public void foo() {

Connection ¢ = customerDB.getConnection(); ...

spider
Subbu Ramanathan [-2SIE

EJB3
<

e EJB 3 has some built-in support for
dependency management using JNDI

e EJB3 relies on an application server

Subbu Ramanathan

Solution Comparisons
-

e Really comes down to Pico Vs. Spring
e Spring is more mature than Pico

e Pico is much lighter than Spring. Spring is more
than just an loC container. It is a web framework as
well.

e |f you would like to use Spring for other reasons as
well, Spring is the choice

e |f you just need only loC (or maybe for a non-web or
a Struts/WebWork app), then Pico is the choice

spider
Subbu Ramanathan [-2SIE

Design Considerations
]
e What classes to register with container?
Enforcing consistent standards
Application extensibility & reusability?
NanoContainer vs. PicoContainer
Pico Stability
Pico Support

Subbu Ramanathan

Thank You
/7]

For
Attending
This
Presentation

(Please remember to fill out the session evaluation)

spider
Subbu Ramanathan [-2SIE

