
Developing loosely coupled systems with
Dependency Injection,

PicoContainer, NanoContainer and AOP

Aslak Hellesøy
Senior Developer - ThoughtWorks

2© Copyright ThoughtWorks, Inc.® 2004

My geekwork

3© Copyright ThoughtWorks, Inc.® 2004

Agenda

• Dependency Injection
• PicoContainer
• NanoContainer
• Questions/Discussion

4© Copyright ThoughtWorks, Inc.® 2004

 “Inversion of Control is about software
Components doing what they are told, when
they are told. Your OO application could well
become unmaintainable without it.”

 Paul Hammant, ThoughtWorks

• IoC – “The Hollywood Principle”
• Dependency Injection
• Dependency Inversion (DIP)
• Lifecycle

5© Copyright ThoughtWorks, Inc.® 2004

Complex dependencies

• How do these relationships get established?

? ?
?

??
?

?

?

? ?
?

6© Copyright ThoughtWorks, Inc.® 2004

A simple example

Trader Ticker

?

• A Stock Trader that buys stocks.
• Gets the price from a Stock Ticker.
• How does the Trader get wired to the Ticker?

7© Copyright ThoughtWorks, Inc.® 2004

Explicit instantiation

public class Trader {
private Ticker ticker = new Ticker();

}

new

Trader Ticker

8© Copyright ThoughtWorks, Inc.® 2004

Singleton ServiceLocator

public class Trader {
private Ticker ticker = (Ticker)

ServiceLocator.getInstance().
get(Ticker.class);

}

Trader

ServiceLocator

Give me
a Ticker

TickerMake/
Retrieve Cached

Ticker

9© Copyright ThoughtWorks, Inc.® 2004

Dependency Injection

public class Trader {
private final Ticker ticker;
public Trader(Ticker ticker) {

 this.ticker = ticker;
}

}

Trader

Ticker

10© Copyright ThoughtWorks, Inc.® 2004

Summary

• Explicit instantiation
• Components instantiate their own dependencies
• Kitchen sink problem
• Inhibits unit testing

• Service Locator
• Components look up dependencies in a well known place
• Invasive
• Inhibits unit testing

• Dependency Injection
• Components don’t reach out to retrieve dependencies
• Instead they are handed dependencies by an external entity
• Non-Invasive
• Unit testing friendly

Service Locator

Dependency Injection

new

11© Copyright ThoughtWorks, Inc.® 2004

Dependency Inversion

• Favours loose coupling  testability in isolation
• Components should be split in two parts

• Service, a declaration of offered functionality (Java interface)
• Implementation, a specific implementation of a service

(class)

• Makes multiple runtime coupling combinations easy
• Breaks the dreaded “everything depends on everything”

problem

C1 C2
C1 I

C2

12© Copyright ThoughtWorks, Inc.® 2004

“I was expecting a paradigm shift
and all I got was a lousy constructor”

Zohar Melamed, BNP Paribas

13© Copyright ThoughtWorks, Inc.® 2004

What does PicoContainer do?

• A simple Dependency Injection container
• It works like a hash table on mescaline

• Object instantiation
• Dependency injection
• Pluggable lifecycle management
• Dependency hierarchies
• Extensible via API and NanoContainer

1. Register components 2. Materialize and lace the components

14© Copyright ThoughtWorks, Inc.® 2004

PicoContainer

pico container
classes objects

15© Copyright ThoughtWorks, Inc.® 2004

Our toy app

SimpleTrader Market

StreamProtocolMarket

Ticker

RandomTicker

TraderTraderScheduler

16© Copyright ThoughtWorks, Inc.® 2004

PicoContainer in action!

[ALT+TAB]

17© Copyright ThoughtWorks, Inc.® 2004

NanoContainer

• Script front-end for PicoContainer
• Allows soft assembly of components in:

• Groovy
• Beanshell
• Javascript (Rhino)
• Jython
• XML

• Adds powerful AOP capability (aopalliance/dynaop)
• Various other extensions

• WebWork 1&2
• Struts
• Hibernate
• JMX
• And much more…

18© Copyright ThoughtWorks, Inc.® 2004

NanoContainer in action!

[ALT+TAB]

19© Copyright ThoughtWorks, Inc.® 2004

Summary

• Dependency Injection Pattern
• Internal decoupling
• Testability
• Configurability
• No-bullshit components

• PicoContainer
• Low level Java API
• Dependency Injection
• Component Lifecycle
• Non-invasive

• NanoContainer
• Several high level script APIs
• AOP
• Integration with other frameworks

20© Copyright ThoughtWorks, Inc.® 2004

Container Hierarchies

• No more static singletons
• Components in parent visible
• Lifecycle propagated down
• Core of complex assemblies
• Parallel to classloaders

21© Copyright ThoughtWorks, Inc.® 2004

NanoWar

• Brings DI and AOP to your web framework
• WebWork 1&2
• Struts
• NanoWeb (our own framework based on Groovy/Velocity)

Web app scope
(javax.servlet.ServletContext)

Session scope
(javax.servlet.http.HttpSession)

Request scope
(javax.servlet.ServletRequest)

22© Copyright ThoughtWorks, Inc.® 2004

NanoWar configuration

<web-app>
 <context-param>
 <param-name>nanocontainer.groovy</param-name>
 <param-value><![CDATA[
 ... Your groovy assembly script here (!) ...
]]></param-value>
 </context-param>
</web-app>

Thank You!

aslak@thoughtworks.com
http://blogs.codehaus.org/people/~rinkrank/

http://www.picocontainer.org/
http://www.nanocontainer.org/

