PostgreSQL Notification
Enhancements

Presenter: Andrew Dunstan
Principal Consultant, Dunslane Consulting LLC
adunstan@postgresqgl.org

= g PostgreSQL Notification
E &S 5 Enhancements

Where we are today

e A listener subscribes or unsubscribes to
notifications with LISTEN and UNLISTEN

* A notifier creates events with NOTIFY

e Both must be clients connected to the same
database

* PostgresSQL handles the mechanics

N .. B PostgreSQL Notification
E &S 5 Enhancements

What is it good for?

 Many things!
- e.g. Job scheduling/coordinating

e | ots easier and more efficient than other
methods

- Especially for one to many notifications
 Can be called by Rules and Triggers

E o = PostgreSQL Notification
E &S 5 Enhancements

Current implementation

* pg_listener table:

Column | Type | Modifiers
______________ T S
relname name not null
listenerpid integer not null
notification integer not null

* relname = event name (for historical reasons)

PostgreSQL Notification
Enhancements

Mechanics — Listening / Unlistening

 LISTEN = new row (eventname, mypid, 0)
« UNLISTEN = delete row

PostgreSQL Notification
Enhancements

Mechanics - Notifying

« NOTIFY = update pg_listener
set notifier = mypid
where relname = eventhame

* NOTIFY = signal relevant backends

- If I am listening for this event, don't do this but
forward event to my frontend directly

N .. B PostgreSQL Notification
E &S 5 Enhancements

Mechanics - Collection

* For each row where mypid = listener, forward
event to my frontend and set notifier back to 0.

PostgreSQL Notification
Enhancements

Mechanics — Transactions

« NOTIFY /LISTEN / UNLISTEN actions only
applied on commit

- held in a backend local queue until then

* Collection happens in its own transaction (from
users POV between transactions)

E o = PostgreSQL Notification
E &S 5 Enhancements

Limitations

e Events can be lost!

- If the same event occurs between two calls on
collection by a backend, it will only see one of them

- Because pg_listener has one row per (event,
listener) pair.

* No provision for accompanying message

E o = PostgreSQL Notification
E &S 5 Enhancements

Payloads

A message to accompany an event
- e.g. Event = "Batch Finished”, message = batch _id
* Already provision in V3 protocol for it

« Will make system design easier
« Reduce number of events listened for

N .. B PostgreSQL Notification
E &S 5 Enhancements

And it looks like this

* NOTIFY stage1 'batch 57°;

- Omitting the message is equivalent to an empty
message

- No breaking existing applications

PostgreSQL Notification
Enhancements

New implementation scheme

Based on existing shared cache invalidation
scheme

Keep an event queue in shared memory
Every event will be in the queue

- Once! (NOT once per listener)
No listener registration needed

Each listener has its own queue pointer

E o = PostgreSQL Notification
E &S 5 Enhancements

What do we need Iin shared
memory?

* Global queue head and tall pointers
* One queue tail pointer per backend
* Queue buffer — size configurable

- Entries contain database oid + length + event name
+ payload + alignment padding

— Conceptually circular

E o = PostgreSQL Notification
E &S 5 Enhancements

How much buffer space

* We hope enough not to block

* Average entry size X
Maximum event burst rate X
Maximum time waiting for collection

~ Listeners should not run long running transactions,
although notifiers can

N .. B PostgreSQL Notification
E &S 5 Enhancements

Example

* Average entry size = 150
« Maximum event burst rate = 1event per second

 Maximum transaction time by listener = 1 hour
~ Buffer needed = 540,000 bytes

N .. B PostgreSQL Notification
E &S 5 Enhancements

What should be the default?

* Those rates are probably a bit extreme

- 1 event per second is high
- 1 hour walit by a listener is very high

* PostgreSQL tends to be conservative,
especially about shared memory

* | am thinking of having a default around 100kB.

E o = PostgreSQL Notification
E &S 5 Enhancements

Adding an entry

* |f there iIs room between head and tail, just add
it and adjust head

 If not, move tail forward to least of listener talls,
and if there is now enough room add it and
adjust head

* If not, signal listeners and sleep for a short
period before retrying

N .. B PostgreSQL Notification
E &S 5 Enhancements

Collecting entries

* Check regularly — call from
CHECK FOR_INTERRUPTS()

* For each entry from our tail to head, if db oid
matches our db and event name Is in our event
list, collect entry

e Set our tail pointer to head

N .. B PostgreSQL Notification
E &S 5 Enhancements

Locking

e Need 2 locks - “head” lock and “tail” lock.

- Adding entry requires exclusive “head” lock
- Adjusting tail requires exclusive “tail” lock

— Collecting entries requires “shared” tail lock.

» Because collecting entry doesn't change global tail
pointer

* Notifiers block each other, sometimes block
listeners. Listeners don't block each other.

E o = PostgreSQL Notification
E &S 5 Enhancements

Other functionality

» Since there is no pg_listener any more, we
need a function to tell us what events we're
listening on:

pg_listened events(out event name)
returns setof record

* \We can't have a function that tell us the events
every listener is listing for, as there is no longer
a central list of those.

E o = PostgreSQL Notification
E &S 5 Enhancements

Summary: Benefits + Risks

* Guaranteed delivery of all events, in order
 Payload messages
» Efficiency gain — should be much faster

 Potential downside: blocked notifiers if buffer is
too small or listeners are too slow

E o = PostgreSQL Notification
E &S 5 Enhancements

