

Performance
Whack-a-Mole

2009

“The database is so fast. I don't
know if we'll ever max it out.”

-- Not Your Client, Inc.

“My database is slow.”

-- Every Single Support Client LLC

Part 1:
The Rules

The Layer Cake

The Layer Cake

Silicon

User

The Layer Cake

HardwareStorage

Operating System

PostgreSQL

Middleware

Application

Filesystem

Schema

Drivers

Queries

RAM/CPU Network

Kernel

Config

Connections Caching

Transactions

The Layer Cake

The Layer Cake

HardwareStorage

Operating System

PostgreSQL

Middleware

Application

Filesystem

Schema

Drivers

Queries

RAM/CPU Network

Kernel

Config

Connections Caching

Transactions

The Funnel

HW

Application

Middleware

PostgreSQL

OS

Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

The Hockey Stick

*the Ottawa Senators trademark and logo are property of the Ottawa Senators

The Hockey Stick
E

ffe
ct

 o
n

P
er

fo
rm

an
ce

Ranked Issues

The Hockey Stick
E

ffe
ct

 o
n

P
er

fo
rm

an
ce

Ranked Issues

Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

2.Less than 10% of Moles cause 90% of
performance degradation.

Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

2.Less than 10% of Moles cause 90% of
performance degradation.
● corollary: we don't care about the other 90% of Moles

The Whack-a-Mole Effect
E

ffe
ct

 o
n

P
er

fo
rm

an
ce

Ranked Issues

The Whack-a-Mole Effect
E

ffe
ct

 o
n

P
er

fo
rm

an
ce

Ranked Issues

The Whack-a-Mole Effect
E

ffe
ct

 o
n

P
er

fo
rm

an
ce

Ranked Issues

Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

2.Less than 10% of Moles cause 90% of
performance degradation.
● corollary: we don't care about the other 90% of Moles

3.At any time, it is usually only possible to observe
and troubleshoot, or Whack, the “largest” Mole.

What Color Is My Application?
►Web Application (Web)

►Online Transaction Processing (OLTP)

►Data Warehousing (DW)

W

O

D

What Color Is My Application?
►Web Application (Web)
●DB smaller than RAM
●90% or more simple queries

►Online Transaction Processing (OLTP)

►Data Warehousing (DW)

W

O

D

What Color Is My Application?
►Web Application (Web)
●DB smaller than RAM
●90% or more simple queries

►Online Transaction Processing (OLTP)
●DB slightly larger than RAM to 1TB
●20-40% small data write queries
●Some long transactions and complex read queries

►Data Warehousing (DW)

W

O

D

What Color Is My Application?
►Web Application (Web)
●DB smaller than RAM
●90% or more simple queries

►Online Transaction Processing (OLTP)
●DB slightly larger than RAM to 1TB
●20-40% small data write queries
●Some long transactions and complex read queries

►Data Warehousing (DW)
●Large to huge databases (100GB to 100TB)
●Large complex reporting queries
●Large bulk loads of data
●Also called "Decision Support" or "Business Intelligence"

W

O

D

What Color Is My Application?
►Web Application (Web)
●CPU-bound
●Moles: caching, pooling, connection time

►Online Transaction Processing (OLTP)
●CPU or I/O bound
●Moles: locks, cache, transactions, write speed, log

►Data Warehousing (DW)
●I/O or RAM bound
●Moles: seq scans, resources, bad queries, bulk loads

W

O

D

Rules of Whack-a-Mole

1.Most “database performance problems”, or
Moles, are not actually database performance
problems.

2.Less than 10% of Moles cause 90% of
performance degradation.
● corollary: we don't care about the other 90% of Moles

3.At any time, it is usually only possible to observe
and troubleshoot, or Whack, the “largest” Mole.

4.Different application types usually have different
Moles and need different troubleshooting.

Whack-a-Mole Strategy

1. setup
● identify the application type
● gather problem reports

2.baseline
3.the hunt
● use tools to seek mole in most likely locations
● keep trying locations until mole is found

4.the whack
5.repeat hunt and whack
● until enough moles are gone

Part 2:
Baseline

What's a Baseline?

►Gather information about the system
●you need to know what's happening at every level of the

stack
●identify potential trouble areas to come back to later

►Basic Setup
●check the hardware/OS setup for sanity
●apply the conventional postgresql.conf calculations
●do conventional wisdom middleware and application setup
●should be fast run-though, like an hour

Why Baseline?

►Why not just go straight to Whacking?
●extremely poor basic setup may mask more serious issues
●baseline setup may turn out to be all that's needed
●deviations from baseline can be clues to finding Moles
●baseline will make your setup comparable to other

installations so you can check tests
●clients/sysadmins/developers are seldom a reliable source of

bottleneck information

Steps for Baseline

1.Hardware setup
2.Filesystem & OS Setup
3.PostgreSQL.conf
4.Drivers, Pooling & Caching
5.Application Setup Information

Steps for Baseline

HardwareStorage

Operating System

PostgreSQL

Middleware

Application

Filesystem

Schema

Drivers

Queries

RAM/CPU Network

Kernel

Config

Connections Caching

Transactions

1.

2.

3.

4.

5.

Steps for Baseline

HardwareStorage

Operating System

PostgreSQL

Middleware

Application

Filesystem

Schema

Drivers

Queries

RAM/CPU Network

Kernel

Config

Connections Caching

Transactions

5.

4.

3.

2.

1.

Hardware Baseline

►Gather Data
●Server

▬CPU model, speed, number, arch
▬RAM quantity, speed, configuration

●Storage
▬ Interface (cards, RAID)
▬Disk type, size, speed
▬Array/SAN configuration

●Network
▬ network type and bandwith
▬ devices and models
▬ switch/routing configuration

Hardware Baseline

►Baseline
●Storage

▬Use appropriate RAID configuration
▬Turn on write caching if safe
▬Make sure you're using all channels/devices

●Network
▬ application servers & DB server should be on dedicated

network
▬ use redundant connections & load balancing if available

Storage Decision Tree
lots of
writes?

fits in
RAM?

afford
good HW

RAID?

terabytes
of data?

no RAID

SW RAID

HW RAID

SAN/NAS
mostly
read?

RAID 5 RAID 1+0

Yes

No Yes

No

No

Yes

Yes

No

Yes No

Hardware Baseline

►Medium-Volume OLTP Application
●2 Appservers, 1 DB server

▬ on private gig-E network
●DB server is HP DL380

▬ 2x Quad Xeon
▬ 16 GB RAM

●Attached to shared SCSI storage box
▬ 7 drives available

– 2 in RAID 1 for xlog
– 4 in RAID 1+0 for DB
– OS on internal drives

Operating System Baseline

►OS
●gather data

▬OS, version, patch level, any modifications made
▬ hardware driver information
▬ system usage by other applications (& resource usage)

●baseline
▬ update to latest patch level (probably)
▬ update hardware drivers (probably)
▬migrate conflicting applications

– other DBMSes
– other applications with heavy HW usage

Operating System Baseline

►Filesystem
●gather data

▬ filesystem type, partitions
▬ locations of files for OS, PostgreSQL, other apps
▬ filesystem settings

●baseline
▬move xlog to separate disk/array/partition
▬ set filesystem for general recommendations

– lower journaling levels
– directio for xlog (if possible)
– aggressive caching for DB
– other settings specific to FS

Operating System Baseline

►OLTP Server running on Solaris 10
●Updated to Update5

▬Fibercard driver patched
●Dedicated Server

▬MySQL removed to less critical machine
●Solaris settings configured:

– set segmapsize=10737418240
– set ufs:freebehind=0
– set segmap_percent=50

●Filesystem configured:
– mount -o forcedirectio /dev/rdsk/cntndnsn /mypath/pg_xlog
– tunefs -a 128 /mypath/pg_xlog

PostgreSQL Baseline

►Gather Data
●schema

▬ tables: design, data size, partitioning, tablespaces
▬ indexes
▬ stored procedures

●.conf settings
▬ ask about any non-defaults

●maintenance
▬ have vacuum & analyze been run?
▬when and with what settings?

PostgreSQL Baseline

►.conf Baseline for modern servers
●shared_buffers = 25% RAM
●work_mem = [W] 512K [O] 2MB [D] 128MB

▬ but not more than RAM / no_connections
●maintenance_work_mem = 1/16 RAM
●checkpoint_segments = [W] 8, [O],[D] 16-64
●wal_buffers = 1MB [W], 8MB [O],[D]
●effective_cache_size = 2/3 * RAM

PostgreSQL Baseline

►maintenance baseline
●[W][O] set up autovaccuum

▬ autovacuum = on
▬ vacuum_cost_delay = 20ms
▬ lower *_threshold for small databases

●[D] set up vacuum/analyze batches with data batch
import/update

Middleware Baseline
►Gather data
●DB drivers: driver, version
●Connections: method, pooling (if any), pooling configuration
●Caching: methods, tools used, versions, cache configuration
●ORM: software, version

►Baseline
●Update to latest middleware software: drivers, cache, etc.
●Utilize all pooling and caching methods available

▬ use prepared queries
▬ plan, parse, data caching (if available)
▬ pool should be sized to the maximum connections needed
▬ 5-15 app connections per DB connection
▬ persistent connections if no pool

Application Baseline

►Gather data
●application type
●transaction model and volume
●query types and relative quantities

▬ get some typical queries, or better, logs
●stored procedure execution, if any
●understand how the application generally works

▬ get a use perspective
▬ find out purpose and sequence of usage
▬ usage patterns: constant or peak traffic?

Part 3:
Tools for

Mole-Hunting

Types of Tools: HW & OS

►Operating system tools
●simple & easy to use, non-invasive
●let you monitor hardware usage, gross system characteristics
●often the first option to tell what kind of Mole you have

►Benchmarks & microbenchmarks
●very invasive: need to take over host system
●allow comparable testing of HW & OS

Types of Tools: PostgreSQL
►pg_stat* views, DTrace
●minimally invasive, fast
●give you more internal data about what's going on in the DB

realtime
●let you spot schema, query, procedure, lock problems

►PostgreSQL log & pg_fouine & csvlog
●somewhat invasive, slow
●allows introspection on specific types of db activity
●compute overall statistics on query, DB load

►Explain Analyze
●troubleshoot “bad queries”
●for fixing specific queries only

Types of Tools Not Covered
... but you should use about anyway

►Application server tools
●response time analysis tools
●database activity monitoring tools
●cache usage monitoring

►Workload simulation & screen scraping
●the best benchmark is a simulation of your own application
●tools like lwp and log replay tools

►Bug detection tools
●valgrind, MDB, GDB
●sometimes your performance issue is a genuine software bug

Part 3a:
Operating

System Tools

OS Tools: ps (dbstat)

►lets you see running PostgreSQL processes
●gives you an idea of concurrent activity & memory/cpu usage
●lets you spot hung and long-running statements

►pg_top is better (Linux)
●gives you ps content
●plus information about what queries are running

OS Tools: mpstat

►see CPU activity for each CPU
●find out if you're CPU-bound
●see if all CPUs are being utilized
●detect context-switch issues

OS Tools: vmstat, free

►Watch memory usage
●see if RAM is saturated

▬ are you not able to cache enough?
▬ are you swapping?

OS Tools: iostat

►monitor usage of storage
●see if I/O is saturated
●see if one storage resource is bottlenecking everything else
●watch for checkpoint spikes

OS Tools: sar (Linux)

►retrieve iostat, mpstat, vmstat etc. information
retroactively
●Linux stores a snapshot of this data every 10 minutes

▬may not be detailed enough
●check system load for when the crash/bottleneck happened

even if you weren't monitoring

OS Tools: DTrace (Solaris, BSD)

►scriptable tracing tool
●trace the full application stack
●compute resource uses by single query or type of operation
●look for "deep" performance bottlenecks in the PostgreSQL

code

Part 3b:
Benchmarks

Benchmarks: filesystem

►dd
●simple sequential writes / reads only

►bonnie++ 1.94
●see I/O throughput & issues
●check seek, random write speeds

▬ concurrency limited
●use version 1.94 to check concurrency & lag time

►IOZone
●check speeds on specific operations

▬ do not run in "auto mode"
▬ concurrency broken

Benchmarks: pgbench

►Very simple DB microbenchmark
●tests mostly I/O and connection processing speed
●doesn't test locking, computation, or query planning
●results sometimes not reproduceable
●mostly useful to prove large OS+HW issues

▬ not useful for fine performance tuning

►Run test appropriate to your workload
●cached in shared_buffers size
●cached in RAM size
●on disk size

▬ a little
▬ a lot

Benchmarks: pgbench

Thanks to Greg Smith for this graph!

Benchmarks: Serious

►Use serious benchmarks only when you have a
problem which makes the system unusable
●you'll have to take the system offline
●it gives you reproduceable results to send to vendors &

mailing lists
●best way to go after proven bugs you can't work around

Benchmarks: Serious

►DBT2
●Serious OLTP benchmark

▬ based on TPCC
▬ reproducable results, works out a lot more of the system
▬ complex & time-consuming to set up, run

►DBT3, DBT5 in process
●new OLTP plus DW benchmarks

►Others being developed
●pgUnitTest
●EAstress
●BenchmarkSQL

Part 3c:
System Views

pg_stat_database, pg_database_size

►Get general traffic statistics
●number of connections
●transaction commits througput

►See rollback and hit ratios
●are you dealing with a lot of rollbacks due to aborted

transactions?
●is little or none of the database fitting in the cache?

►see how large your database is
●scope RAM & I/O scaling
●check RAID config

pg_tables, pg_relation_size

►scope out the tables
●how many are there?
●do they have triggers?

▬may cost you on updates

►check size of each table & index
●monitor for bloating
●see if tablespaces or partitions are recommended

pg_stat_activity

►check concurrent query activity
●get an idea of the proportion of idle connections
●spot check types of activity
●much better than ps for catching runaway transactions

►use pg_top instead
●for above plus CPU/RAM usage

pg_locks

►Spot-check for lock conflicts
●a few are normal in high-data-integrity applications, but a lot

is bad
▬ locks held for a long time are really bad

●often a sign that you should change your data locking
strategy
▬ or simply lower deadlock_timeout

●if you have ungranted locks, check them against
pg_stat_activity

pg_stat[io]_user_tables,
pg_stat[io]_user_indexes

►check relative table activity
●how much select vs. update traffic?

►look for seq scans
●do we need more/different indexes?

►check index activity
●should some indexes be dropped?
●are some very large indexes dominating I/O?

pg_stat_bgwriter

►see if the bgwriter is clearing the caches
●are we suffering checkpoint spikes?

pg_stat_user_functions (new 8.4)

►check execution time for each function
●including difference between code execution and callouts

►find your slowest functions
●then instrument them with auto_explain (see later)

pg_stat_statements (new in 8.4)

►realtime "top query" information
●how many queries executing
●slowest/most frequent queries

Part 3d:
Activity Log

How to use the pg_log

1.Figure out what behavior you're trying to
observe

2.Turn only those options on
3.Run a short, reproducible test case (if possible)
● if not, just deliberately trigger the problem behavior

4.Digest the log results

How to use the pg_log

►If you have to log a production server, you'll
need to filter out the noise. Try:
● rotating the log every hour,
● turning on query logging for minutes to an hour,
● or logging only one connection.

Basic query monitoring

log_destination = 'csvlog'
redirect_stderr = on
log_min_duration_statement = 0

pg_fouine

►Calculates overall query statistics
●find the slowest queries
●find the ones running the most frequently
●probably your best way to find the “biggest query moles”

►Other similar tools
●PGSI
●PQA

Harvesting slow queries

log_min_duration_statement = 30
log_locks = on
deadlock_timeout = 5s
log_temp_files = 32kB

Monitoring connections

log_connections = on
log_disconnections = on

Auto-Explain (new for 8.4)

►log explain plans to the pg_log
●turn on and off dynamically
●add logging of explain plans for specific queries in your code

▬ especially functions

►helps solve
"I can't reproduce the slow query in
development"

Part 3e:
EXPLAIN
ANALYZE

The “Bad Query” tool

►After you've found your most costly queries
►Use EXPLAIN ANALYZE to find out why they're

so costly
●sometimes you can fix them immediately
●other times they indicate problems in other areas

▬HW issues
▬ schema issues
▬ lack of db maintenance

Reading EXPLAIN ANALYZE

►It's an inverted tree
●don't start at the top
●execution starts at the innermost node and works up and out
●look for the lowest node with a problem

►Read it holistically
●some nodes execute in parallel and influence each other
●“gaps” between nodes can be significant
●subtrees which are slow don't matter if other subtrees are

slower

Things to Look For: Examples

►Bad rowcount estimates
●cause the query to choose bad query plans

▬worse than 3x or 0.3x will often cause wrong plan
●generally can be fixed with increased planner statistics

▬ or adjusting function row estimate
●sometimes require query re-writing

Things to Look For: Examples

►Slow Scans
●index or seq scans which seem too slow by estimate
●usually indicates either

▬ table/index bloat due to poor maintenance
▬ I/O saturation
▬ I/O problems
▬ not enough RAM

Things to Look For: Examples

►On-disk sorts
●disk sorts are much slower than in memory

▬ look at for queries using more sort RAM than is allocated
▬ increase work_mem

Part 4:
Hunting Moles

Hunting Moles

►What kind?
●What are the symptoms?

▬ response times
▬ error messages

►When?
●activity which causes the problem

▬ general slowdown or specific operation, or periodic?
▬ caused just by one activity, or by several?

●concurrent system activity
▬ system/DB load?
▬what other operations are going on on the system?

Common Types of Moles

►I/O Mole
●behavior: cpu underutilized: ram available, I/O saturated for

at least one device
●habitats: [D], [O], any heavy write load or very large database
●common causes:

▬ bad I/O hardware/software
▬ bad I/O config
▬ not enough ram
▬ too much data requested from application
▬ bad schema: missing indexes or partitioning needed

Common Types of Moles

►CPU Mole
●behavior: cpus at 90% or more: ram available, I/O not

saturated
●habitats: [W], [O], mostly-read loads or those involving

complex calculation in queries
●causes:

▬ too many queries
▬ insufficient caching/pooling
▬ too much data requested by application
▬ bad queries
▬ bad schema: missing indexes

●can be benign: most DB servers should be
CPU-bound at maximum load

Common Types of Moles

►Locking Mole
●behavior: nothing on DB or App server is at maximum, but

many queries have long waits, often heavy context switching,
pg_locks sometimes shows waits
●habitats: [O], [D], or loads involving pessimistic locking and/or

stored procedures
●causes:

▬ long-running transactions/procedures
▬ cursors held too long
▬ pessimistic instead of optimistic locking or userlocks
▬ poor transaction management (failure to rollback)
▬ various buffer settings in .conf too low
▬PostgreSQL SMP scalability limits

Common Types of Moles

►Application Mole
●behavior: nothing on DB server is at maximum, but RAM or

CPU on the App servers is completely utilized
●habitats: common in J2EE
●causes:

▬ not enough application servers
▬ too much data / too many queries
▬ bad caching/pooling config
▬ driver issues
▬ORM

Part 4a:
The Optimization

Cycle

Query Optimization Cycle

log queries run pg_fouine

explain analyze
worst queries

troubleshoot
worst queries

apply fixes

Query Optimization Cycle (8.4)
check pg_stat_statement

explain analyze
worst queries

troubleshoot
worst queries

apply fixes

Procedure Optimization Cycle

log queries run pg_fouine

instrument
worst
functions

find slow
operations

apply fixes

Procedure Optimization (8.4)
check pg_stat_function

find slow
operations

instrument
worst
functions

apply fixes

Part 4b:
Hunting Moles

Examples

Too Many Queries

►The Setup
●c++ client-server application took 3+ minutes to start up

►The Hunt
●set pg_log to log queries

▬ ran application startup
●ran through pg_fouine

▬ showed over 20,000 queries during startup
▬most of them identical when normalized

►The Whack
●the application was walking several large trees, node-by-node
●taught the programmers to do batch queries and use

connect_by()

Slow DW

►Setup
●Data warehousing / monitoring application

▬DB was 300GB, server 16GB RAM
●Some queries would time out

▬ despite few users on the server
●CPU was available, RAM was full of cached data
●I/O seemed underused

▬ except it never got above a very low ceiling

Slow DW

►The Hunt
●checked some slow queries using EXPLAIN

▬ older data partitions were slow
●used dd, bonnie++, ioZone to check I/O behavior

▬ iSCSI storage was very slow (60mb/s)

►The Whack
●recommended fix/replace of iSCSI storage

▬wasn't feasible so:
●upgraded server to 64GB RAM
●exported large objects in DB to separate filesystem

▬ shrank database by 75%

Connection Management

►The Setup
●JSP web application good 23 hours per day, but bombing

during the peak traffic hour
▬DB server would run out of RAM and stop responding

►The Hunt
●watched pg_stat_activity and process list during peak

periods, took snapshots
▬ saw that connections went up to 2000+ during peak, yet many

of them were idle
▬ verified this by logging connections & disconnections

●checked Tomcat configuration
▬ connection pool: 200 connections
▬ servers were set to reconnect after 10 seconds timeout

Connection Management

►The Whack
●Tomcat was “bombing” the database with thousands of failed

connections
▬ faster than the database could fulfill them

●Fixed configuration
▬min_connections for pool set to 700
▬ connection_timeout and pool connection timeout synchronized

at 20 seconds
●Suggested improvements

▬ upgrade to a J2EE architecture with better pooling

Locked Database

►Setup
●monitoring application

▬ constant data inflow
▬ constant user queries against data
▬ periodic materialized view creation via cron jobs

●database "locked up"
▬ all queries were timing out

►The Hunt
●check pg_locks and pg_stat_activity

▬ several CREATE TABLE statements were pending locks
▬ several bulk updates and inserts were pending locks
▬ all SELECTs were on hold behind these

Locked Database

►The Whack
●application was creating new partitions at runtime

▬ created a circular deadlock situation with UPDATEs
●changed application to pre-allocate partitions nightly

▬ locking situation went away

Checkpoint Spikes

►Setup
●OLTP benchmark, but not as fast as MySQL
●Nothing was maxxed
●Query throughput cycled up and down

►The Hunt
●checked iostat, saw 5-minute cycle
●installed, checked pg_stat_bgwriter

▬ showed high amount of buffers_checkpoint

►The Whack
●increased bgwriter frequency, amounts
●spikes decreased, overall throughput rose slightly

Undead Transactions

►The Setup
●Perl OLTP application was fast when upgraded, but became

slower & slower with time

►The Hunt
●checked db maintenance schedule: vacuum was being run

▬ yet pg_tables showed tables were growing faster than they
should, indexes too

▬ vacuum analyze verbose showed lots of “dead tuples could not
be removed”

●checked pg_stat_activity and process list
▬ “idle in transaction”
▬ some transactions were living for days

Undead Transactions

►The Whack
●programmers fixed application bug to rollback failed

transactions instead of skipping them
●added “undead transaction” checker to their application

monitoring

Is The Mole Dead?

Yes, which means it's time to move on
to the next mole.

Isn't this fun?

Further Questions

►Josh Berkus
●josh@postgresql.org
●pgexperts

▬ josh.berkus@pgexperts.com
▬www.pgexperts.com

●it.toolbox.com/blogs/
database-soup

►Slides/files
●www.pgexperts.com/document.html

►More Advice
●www.postgresql.org/docs
●pgsql-performance list
●www.planetpostgresql.org
●irc.freenode.net

▬ #postgresql

This talk is copyright 2009 Josh Berkus, and is licensed under the creative commons attribution license

Special thanks for borrowed content to:
www.MolePro.com for the WhackaMole Game
Greg Smith for pgbench and bonnie++ results

Robert Treat and Jignesh Shah for Dtrace samples
The Ottawa Senators name and the Senators Logo are property of the Ottawa Senators

