The Write Stuff

Greg Smith

2ndQuadrant US

05/20/2011

2ndQuadrant +

al PostgresQlL

Greg Smith The Write Stuff

About this presentation

» The master source for these slides is

http://projects.2ndquadrant.com

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

http://projects.2ndquadrant.com

The buffer cache

» shared_buffers sets size
» 256MB - 8GB is typical
» Traditional tuning suggests around 25% of total RAM

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

» All dirty data in buffer cache must be flushed to disk
eventually

» WAL segments are 16MB

» Checkpoint requested after every checkpoint_segments worth
of writes

» Timed checkpoint every checkpoint_timeout (5 minute
default)

» Traditional tuning sets checkpoint_segments 16-256

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

Checkpoint spikes

Before 8.3, all dirty data written in one burst

8.3 added Spread Checkpoints

Defaults aim to finish 50% of the way through next checkpoint
fsync flush to disk happens at end of checkpoint

Optimal behavior: OS already wrote data out before fsync call

Attempts to spread the sync out didn't work usefully

vV V.V vV VvV VY

Spikes still happen

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

Linux filesystem trivia

Checkpoint rewrite tests all on Linux

Default and only stable Linux filesystem then was ext3
ext3 handles fsync by writing all cached data to disk
Spread sync can’t help if every fsync writes all data out
WAL writes do fsync too

One reason why separating WAL and database disks helps so
much

vV V. vV v Vv Y

» XFS and ext4 allow granular sync

» Recent Linux kernels (around 2.6.32) make ext3 much better
too

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

Linux write caching

» dirty_ratio and dirty_background_ratio control % of RAM to
allow dirty

More aggressive writing happens when thresholds crossed
Writes can become blocked

Ideally, dirty RAM fits in battery backed cache size
Kernel before 2.6.22: 10%/40% of RAM are thresholds
Kernel 2.6.22 and later: 5%/10% are defaults

Kernel 2.6.29 and later: dirty_bytes and
dirty_background_bytes allow setting exact amount of RAM to
allow dirty

vV vV vV v VvY

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

Write caching, 16GB Server

Dirty Wrback Written Dirty%

1134660 12 0 7.5
1213692 0 0 8.0
1293152 12 0 8.5
1372200 0 36 9.1
1451268 0 20 9.6
1530332 12 411196 10.1

1153944 107000 343440 7.6
881480 109120 293936 5.8
719060 10460 40 4.7 2ndQuadrant+—

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

Having a bad day on purpose with ext3

log_checkpoints shows sync time

8GB of RAM in server

5% dirty=400MB

10% dirty=800MB

256MB of battery-backed cache

Standard pgbench test dirties data very fast

vV vV v vV VvY

2ndQuadrant +

al PostgresQlL

Greg Smith The Write Stuff

pgbench write stalls

TPS
1600 T T T T

tpsdata.t Using 1;2° ——
1400 | .

1200 1
1000 1

800 1

TPS

600 1

400 ¢ 1

200 1

0 ; K i ol i

23.00 2400 25:00 26:00 27:00 28:00 29:00 30:00 31:00 32:00 33.00 34.00

Time during test

2ndQuadrant

Professional PostgresSQL

e Write Stuff

Greg Smi

Checkpoint sync times, ext3, new 9.1 logging

LOG: checkpoint starting: xlog

DEBUG: checkpoint sync:

number=1 file=base/16385/16480 time=10422.859 msec
number=2 file=base/16385/16475_vm time=2896.614 msec
number=3 file=base/16385/16475.1 time=57.836 msec
number=4 file=base/16385/16466 time=20.080 msec ...
number=8 file=base/16385/16475 time=35.164 msec

LOG: checkpoint complete: wrote 2143 buffers (52.3%);

0 transaction log file(s) added, O removed, 3 recycled;
write=1.213 s, sync=13.589 s, total=24.744 s;

sync files=8, longest=10.422s, average=1.698s anQUerant*!

Professiona PostgresQL

Greg Smith The Write Stuff

A really bad day on a popular web site

» XFS
» Lots of RAM

shared_buffers=512MB, typically under 200MB dirty at
checkpoint time

v

Often gigabytes of write cache dirty with random writes
Still well under 10%, Linux is unfortunately not too concerned

sync time = 50 minutes?!

vV v.v Yy

Not even 1IMB/second into a medium sized disk array

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

Another bad day, on a heavily queried internal system

» LOG: checkpoint complete: wrote 33282 buffers (3.2%);
» 0 transaction log file(s) added, 60 removed, 129 recycled,;
> write=228.848 s, sync=4628.879 s, total=4858.859 s

» (That's 80 minutes for 264MB of writes!)

2ndQuadrant +

al PostgresQlL

Greg Smith The Write Stuff

Writes in PostgreSQL

» Checkpoint write: most efficient
» Background writer write: still good

» Backend write, fsync aborbed by background writer: fine if
OS caches

» Backend write, BGW queue filled, backend does fsync itself:
bad

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

Backend sync counts

$ psql -x -c "select * from pg_stat_bgwriter"
checkpoints_timed | 0

checkpoints_req | 4

buffers_checkpoint | 6

buffers clean | 0

maxwritten_clean |

buffers_backend | 654685

buffers_backend sync | 84

buffers_alloc | 1225
2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

The root problem

» Background writer stop working normally while running sync
» Never pauses to fully consume the fsync queues backends fill
» Once filled, all backend writes do their own fsync

» Serious competition for the checkpoint writes

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

Possible solutions

» Introduce a pause to spread out writes after each file sync

» During the pause time, continue running regular background
writer work

» Improve general fsync queue management

» Upgrade Linux kernel, reduce write cache to small number of
bytes

2ndQuadrant

Professional PostgresSQL

Greg Smith The Write Stuff

Spread sync: pause after each sync, cleanup fsync queue

» Helped keep fsync contention under control

» Deployed into production
» Works, but improvement hard to replicate on testbed

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

Use a tiny Linux write cache

» Drop dirty_bytes and dirty_background_bytes to 128MB/64MB

» ext3: 10-15% drop in transaction rate, but latency drops to
under 1/4 of standard config

» XFS: Performance generally worse
» Problem: VACUUM time is 48% to 71% longer!

» Ring buffer in VACUUM needs a large OS write cache to run
efficiently

2ndQuadrant +

al PostgresQlL

Greg Smith The Write Stuff

Compact fsync queue: comitted for 9.1

» Many fsync requests in the queue were repeated requests for
the same file

» Client backends who find the queue full compact it
themselves, by removing duplicates

» No longer need the background writer to catch this worst-case
scenario

» Works perfectly in synthetic benchmarks
» Zero buffers_backend_sync, 10% gain in write performance

» Gains from other approaches marginal after this change

2ndQuadrant +

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

Planning impact

» Be careful using large settings for shared_buffers with heavy
writes

» Monitor size of OS cache dirty data to measure problems here
grep "Dirty:” /proc/meminfo
» ext3 can be increasingly bad as total system memory
continues to increase

» Revival of XFS popularity for over 16 TB filesystems makes it
more viable now

» Need to use nobarrier option when you have a battery-backed
cache

» Status of ext4 still not explored well

» Logging sync timing and compact fsync queue are both easy
to backport changes 2ndQuadrant o

uuuuuuuuu | PostgresQL

Greg Smith The Write Stuff

