
The Write Stuff

Greg Smith

2ndQuadrant US

05/20/2011

Greg Smith The Write Stuff



About this presentation

I The master source for these slides is

http://projects.2ndquadrant.com

Greg Smith The Write Stuff

http://projects.2ndquadrant.com


The buffer cache

I shared buffers sets size

I 256MB - 8GB is typical

I Traditional tuning suggests around 25% of total RAM

Greg Smith The Write Stuff



Checkpoints

I All dirty data in buffer cache must be flushed to disk
eventually

I WAL segments are 16MB

I Checkpoint requested after every checkpoint segments worth
of writes

I Timed checkpoint every checkpoint timeout (5 minute
default)

I Traditional tuning sets checkpoint segments 16-256

Greg Smith The Write Stuff



Checkpoint spikes

I Before 8.3, all dirty data written in one burst

I 8.3 added Spread Checkpoints

I Defaults aim to finish 50% of the way through next checkpoint

I fsync flush to disk happens at end of checkpoint

I Optimal behavior: OS already wrote data out before fsync call

I Attempts to spread the sync out didn’t work usefully

I Spikes still happen

Greg Smith The Write Stuff



Linux filesystem trivia

I Checkpoint rewrite tests all on Linux

I Default and only stable Linux filesystem then was ext3

I ext3 handles fsync by writing all cached data to disk

I Spread sync can’t help if every fsync writes all data out

I WAL writes do fsync too

I One reason why separating WAL and database disks helps so
much

I XFS and ext4 allow granular sync

I Recent Linux kernels (around 2.6.32) make ext3 much better
too

Greg Smith The Write Stuff



Linux write caching

I dirty ratio and dirty background ratio control % of RAM to
allow dirty

I More aggressive writing happens when thresholds crossed

I Writes can become blocked

I Ideally, dirty RAM fits in battery backed cache size

I Kernel before 2.6.22: 10%/40% of RAM are thresholds

I Kernel 2.6.22 and later: 5%/10% are defaults

I Kernel 2.6.29 and later: dirty bytes and
dirty background bytes allow setting exact amount of RAM to
allow dirty

Greg Smith The Write Stuff



Write caching, 16GB Server

Dirty Wrback Written Dirty%

1134660 12 0 7.5

1213692 0 0 8.0

1293152 12 0 8.5

1372200 0 36 9.1

1451268 0 20 9.6

1530332 12 411196 10.1

1153944 107000 343440 7.6

881480 109120 293936 5.8

719060 10460 40 4.7

Greg Smith The Write Stuff



Having a bad day on purpose with ext3

I log checkpoints shows sync time

I 8GB of RAM in server

I 5% dirty=400MB

I 10% dirty=800MB

I 256MB of battery-backed cache

I Standard pgbench test dirties data very fast

Greg Smith The Write Stuff



pgbench write stalls

Greg Smith The Write Stuff



Checkpoint sync times, ext3, new 9.1 logging

LOG: checkpoint starting: xlog

DEBUG: checkpoint sync:

number=1 file=base/16385/16480 time=10422.859 msec

number=2 file=base/16385/16475 vm time=2896.614 msec

number=3 file=base/16385/16475.1 time=57.836 msec

number=4 file=base/16385/16466 time=20.080 msec ...

number=8 file=base/16385/16475 time=35.164 msec

LOG: checkpoint complete: wrote 2143 buffers (52.3%);

0 transaction log file(s) added, 0 removed, 3 recycled;

write=1.213 s, sync=13.589 s, total=24.744 s;

sync files=8, longest=10.422s, average=1.698s

Greg Smith The Write Stuff



A really bad day on a popular web site

I XFS

I Lots of RAM

I shared buffers=512MB, typically under 200MB dirty at
checkpoint time

I Often gigabytes of write cache dirty with random writes

I Still well under 10%, Linux is unfortunately not too concerned

I sync time = 50 minutes?!

I Not even 1MB/second into a medium sized disk array

Greg Smith The Write Stuff



Another bad day, on a heavily queried internal system

I LOG: checkpoint complete: wrote 33282 buffers (3.2%);

I 0 transaction log file(s) added, 60 removed, 129 recycled;

I write=228.848 s, sync=4628.879 s, total=4858.859 s

I (That’s 80 minutes for 264MB of writes!)

Greg Smith The Write Stuff



Writes in PostgreSQL

I Checkpoint write: most efficient

I Background writer write: still good

I Backend write, fsync aborbed by background writer: fine if
OS caches

I Backend write, BGW queue filled, backend does fsync itself:
bad

Greg Smith The Write Stuff



Backend sync counts

$ psql -x -c "select * from pg stat bgwriter"

checkpoints timed | 0

checkpoints req | 4

buffers checkpoint | 6

buffers clean | 0

maxwritten clean | 0

buffers backend | 654685

buffers backend sync | 84

buffers alloc | 1225

Greg Smith The Write Stuff



The root problem

I Background writer stop working normally while running sync

I Never pauses to fully consume the fsync queues backends fill

I Once filled, all backend writes do their own fsync

I Serious competition for the checkpoint writes

Greg Smith The Write Stuff



Possible solutions

I Introduce a pause to spread out writes after each file sync

I During the pause time, continue running regular background
writer work

I Improve general fsync queue management

I Upgrade Linux kernel, reduce write cache to small number of
bytes

Greg Smith The Write Stuff



Spread sync: pause after each sync, cleanup fsync queue

I Helped keep fsync contention under control

I Deployed into production

I Works, but improvement hard to replicate on testbed

Greg Smith The Write Stuff



Use a tiny Linux write cache

I Drop dirty bytes and dirty background bytes to 128MB/64MB

I ext3: 10-15% drop in transaction rate, but latency drops to
under 1/4 of standard config

I XFS: Performance generally worse

I Problem: VACUUM time is 48% to 71% longer!

I Ring buffer in VACUUM needs a large OS write cache to run
efficiently

Greg Smith The Write Stuff



Compact fsync queue: comitted for 9.1

I Many fsync requests in the queue were repeated requests for
the same file

I Client backends who find the queue full compact it
themselves, by removing duplicates

I No longer need the background writer to catch this worst-case
scenario

I Works perfectly in synthetic benchmarks

I Zero buffers backend sync, 10% gain in write performance

I Gains from other approaches marginal after this change

Greg Smith The Write Stuff



Planning impact

I Be careful using large settings for shared buffers with heavy
writes

I Monitor size of OS cache dirty data to measure problems here

I grep ”Dirty:” /proc/meminfo

I ext3 can be increasingly bad as total system memory
continues to increase

I Revival of XFS popularity for over 16TB filesystems makes it
more viable now

I Need to use nobarrier option when you have a battery-backed
cache

I Status of ext4 still not explored well

I Logging sync timing and compact fsync queue are both easy
to backport changes

Greg Smith The Write Stuff


