
On snakes and elephants
Using Python with and in PostgreSQL

Jan Urbański
j.urbanski@wulczer.org

Ducksboard

PGCon 2012, Ottawa, May 18

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 1 / 64

For those following at home

Getting the slides

$ wget http://wulczer.org/snakes-and-elephants.pdf

Try the code

$ mkvirutalenv pgcon

$ pip install psycopg2 ipython requests

$ createdb pgcon

$ psql pgcon -c ’create extension plpythonu’

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 2 / 64

1 The language
A quick glance
Choosing the version

2 Drivers
DB API 2.0
Overview of existing drivers
Psycopg2 features and examples

3 ORMs
Why would you even want one?
Django ORM
SQLAlchemy

4 PL/Python
Use Python straight from the database
Best practices
Tricks, skulduggery and black magic

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 3 / 64

The language A quick glance

Outline

1 The language
A quick glance
Choosing the version

2 Drivers

3 ORMs

4 PL/Python

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 4 / 64

The language A quick glance

The language

What is Python?

Python is an old, boring, enterprise technology.

I Java (released 1995), PHP (released 1995), Postgres95 (released
1995), Python (released 1991)

I there should be one – and preferably only one – obvious way to do it

I used at Google, the NASA and everywhere from web development
through scientific software to system administration tools

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 5 / 64

The language A quick glance

The language

What is Python?

Python is an old, boring, enterprise technology.

I Java (released 1995), PHP (released 1995), Postgres95 (released
1995), Python (released 1991)

I there should be one – and preferably only one – obvious way to do it

I used at Google, the NASA and everywhere from web development
through scientific software to system administration tools

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 5 / 64

The language A quick glance

The language

What is Python?

Python is an old, boring, enterprise technology.

I Java (released 1995), PHP (released 1995), Postgres95 (released
1995), Python (released 1991)

I there should be one – and preferably only one – obvious way to do it

I used at Google, the NASA and everywhere from web development
through scientific software to system administration tools

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 5 / 64

The language A quick glance

The language

What is Python?

Python is an old, boring, enterprise technology.

I Java (released 1995), PHP (released 1995), Postgres95 (released
1995), Python (released 1991)

I there should be one – and preferably only one – obvious way to do it

I used at Google, the NASA and everywhere from web development
through scientific software to system administration tools

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 5 / 64

The language A quick glance

Problems with Python

I multiple existing Postgres drivers make it difficult to decide which one
to use in a new project

I the same goes for ORMs and other higher-level libraries

I the Python 2 vs Python 3 mess

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 6 / 64

The language Choosing the version

Outline

1 The language
A quick glance
Choosing the version

2 Drivers

3 ORMs

4 PL/Python

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 7 / 64

The language Choosing the version

Use Python 2.7

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 8 / 64

The language Choosing the version

Python 2 or Python 3

I even though Python 3 is the future, the future is still not here

I many resources, libraries and tutorials work with Python 2 only
I follow some basic rules to make your future transition painless

I make sure you know when you’re dealing with characters and when
you’re dealing with bytes

I don’t use deprecated syntax - it’s usually much uglier, anyway!

I use a recent version of Python 2

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 9 / 64

Drivers DB API 2.0

Outline

1 The language

2 Drivers
DB API 2.0
Overview of existing drivers
Psycopg2 features and examples

3 ORMs

4 PL/Python

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 10 / 64

Drivers DB API 2.0

What is DB API 2.0

I a common API for Python database drivers, also known as PEP 249

I been around since 2001, with small modifications since then

I a bare bones specification, the lowest common denominator of
database APIs

I many drivers provide their own extensions

I even though DB people tend to hate it, it has proven useful over the
years

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 11 / 64

Drivers Overview of existing drivers

Outline

1 The language

2 Drivers
DB API 2.0
Overview of existing drivers
Psycopg2 features and examples

3 ORMs

4 PL/Python

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 12 / 64

Drivers Overview of existing drivers

Quite a few drivers

I pyPgSQL

I PyGreSQL

I bpgsql

I ocpgdb

I pgasync

I pg8000

I py-postgresql

I psycopg2

I ... and the fun continues!

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 13 / 64

Drivers Overview of existing drivers

Use Psycopg2

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 14 / 64

Drivers Overview of existing drivers

Driver categories

I C wrappers around libpq
I fast
I features like PGPORT, .pgpass, PGSERVICE, SSL modes all work out

of the box
I one less thing to get wrong

I FEBE protocol implementations in Python
I work with other Python interpreters, like PyPy or Jython
I can give much tighter control over the communication with the

backend

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 15 / 64

Drivers Overview of existing drivers

pyPgSQL

I libpq wrapper

I provides a DB API 2.0 compatible module

I last release was in 2006

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 16 / 64

Drivers Overview of existing drivers

PyGreSQL

I libpq wrapper

I provides both its own interface and a DB API 2.0 compatible module

I last release was in 2009, but the project seems to be alive

I supports most PostgreSQL features when using its own interface (but
for instance server-side cursors are unsupported)

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 17 / 64

Drivers Overview of existing drivers

bpgsql

I pure Python implementation

I provides most of the DB API 2.0 interface

I last activity was in 2009

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 18 / 64

Drivers Overview of existing drivers

ocpgdb

I a wrapper around ODBC

I last project activity was in February 2012

I use this is you’re married to ODBC somehow

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 19 / 64

Drivers Overview of existing drivers

pgasync

I pure Python implementation as a Twisted protocol

I last release was in 2005

I interesting because it’s one of the few drivers that has well integrated
asynchronous features

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 20 / 64

Drivers Overview of existing drivers

pg8000

I pure Python implementation

I provides a DB API 2.0 interface, with some extensions (but for
instance large objects and server-side cursors are unsupported)

I actively maintained

I might be useful if you can’t depend on C Python extensions or want
to use an interpreter that does not support them, like PyPy or Jython)

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 21 / 64

Drivers Overview of existing drivers

py-postgresql

I pure Python implementation, with optional optimisations in C

I provides its own interface as well as a DB API 2.0 compatible module

I actively maintained

I quite featureful, going beyond simple querying - supports COPY,
LISTEN/NOTIFY, server-side cursors, advisory locks, etc

I Python 3 only

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 22 / 64

Drivers Overview of existing drivers

psycopg2

I libpq wrapper

I based on DB API 2.0 with own extensions for Postgres-specific things

I actively maintained

I big community, widespread usage, quite featureful

I runs on Python 2 and 3

I well-defined threading behaviour

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 23 / 64

Drivers Psycopg2 features and examples

Outline

1 The language

2 Drivers
DB API 2.0
Overview of existing drivers
Psycopg2 features and examples

3 ORMs

4 PL/Python

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 24 / 64

Drivers Psycopg2 features and examples

DB API 2.0 usage example

Short example

import psycopg2

conn = psycopg2.connect(’dbname=schemaverse sslmode=require’)

cur = conn.cursor()

cur.execute(’select attack, defense from my_ships’)

for row in cur.fetchall():

print(’total power %s’ % row[0] + row[1])

conn.close()

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 25 / 64

Drivers Psycopg2 features and examples

Parameter passing

I placeholders in query strings are substituted for parameters

I the only conversion argument in use is %s

I supports both positional and named parameter passing, but not mixed

I the arguments should always be a sequence, even if there’s only one!

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 26 / 64

Drivers Psycopg2 features and examples

Parameter passing examples

Parameter passing

cur.execute("select name from persons where last = %s",

("O’Hara",))

cur.execute("update persons set last = %(prefix)s "

"|| ’ ’ || %(last)s where surname = %(last)s",

{"last": "O’Hara", "prefix": "Ms"})

cur.mogrify(’select %s + %s’, (1, 2))

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 27 / 64

Drivers Psycopg2 features and examples

Advanced psycopg2 features

I Python lists are transformed into Postgres arrays, Python tuples into
constructs suitable for usage with IN

I you can register your own typecasters for Python classes and for
Postgres types, some are provided out of the box:

I hstore
I composite types
I UUID
I INET

I by providing custom cursor classes you can hook into the querying
process

I provide asynchronous interface and integration with many async
frameworks

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 28 / 64

Drivers Psycopg2 features and examples

Custom cursor class example

Using a custom cursor

import logging

from psycopg2 import extensions

log = logging.getLogger(’queries’)

class LoggingCursor(extensions.cursor):

def execute(self, query, vars=None):

log.info(’%s’, self.mogrify(query, vars))

return extensions.cursor.execute(self, query, vars)

cur = conn.cursor(cursor_factory=LoggingCursor)

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 29 / 64

Drivers Psycopg2 features and examples

Custom typecaster example

Automatic hstore typecasting

from psycopg2 import extras

extras.register_hstore(None, globally=True, oid=16829)

cur.execute(’select %s || %s’, ({’key1’: ’val1’},

{’key2’: ’val2’}))

INFO:queries:select hstore(ARRAY[’key1’], ARRAY[’val1’]) ||

hstore(ARRAY[’key2’], ARRAY[’val2’])

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 30 / 64

Drivers Psycopg2 features and examples

Asynchronous usage example

Asynchronous notifies

import psycopg2

from psycopg2.extras import wait_select

conn = psycopg2.connect(’dbname=schemaverse sslmode=require’,

async=1)

wait_select(conn)

cur = conn.cursor()

cur.execute(’LISTEN error_channel’)

wait_select(conn)

while 1:

wait_select(conn)

while conn.notifies:

print("notify: %s" % conn.notifies.pop().payload)

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 31 / 64

Drivers Psycopg2 features and examples

Asynchronous usage example cd.

Asynchronous internals

import select

from psycopg2 import extensions

def wait_select(conn):

while 1:

state = conn.poll()

if state == extensions.POLL_OK:

break

elif state == extensions.POLL_READ:

select.select([conn.fileno()], [], [])

elif state == extensions.POLL_WRITE:

select.select([], [conn.fileno()], [])

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 32 / 64

Drivers Psycopg2 features and examples

Transaction management

I transactions are started automatically, but you need to commit them
manually

I you can change that by setting connection.autocommit = True

I always use connection.commit() or .rollback(), otherwise you
might get open transactions left around

I use a recent version, lots of wrinkles have been smoothed lately

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 33 / 64

Drivers Psycopg2 features and examples

Missing features

I PQexecParams support (marooned on discussions about the interface)

I easy access to prepared statements (connected with the above)

I asynchronous support for COPY

I quoting of identifiers

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 34 / 64

ORMs Why would you even want one?

Outline

1 The language

2 Drivers

3 ORMs
Why would you even want one?
Django ORM
SQLAlchemy

4 PL/Python

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 35 / 64

ORMs Why would you even want one?

Reasons to use an ORM

I keeping the whole application in one language

I application developers don’t know SQL well enough

I for simple cases it can speed up development and help with migrating
between schema versions

I your PM doesn’t ask whether to use one, she asks which one to use

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 36 / 64

ORMs Why would you even want one?

Use SQLAlchemy

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 37 / 64

ORMs Django ORM

Outline

1 The language

2 Drivers

3 ORMs
Why would you even want one?
Django ORM
SQLAlchemy

4 PL/Python

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 38 / 64

ORMs Django ORM

Characteristics of the Django ORM

I wildly popular, most people will end up having contact with it

I provides a handy administration tool if you use it across the board

I integrates well with the rest of the framework, making things work
seamlessly (until they break)

I has a bunch of shortcomings

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 39 / 64

ORMs Django ORM

Shortcomings of the Django ORM

I no support for multiple column primary keys

I little control over generated queries

I creates and tears down connections for every request

I no support for Postgres-specific datatypes

I no support for stored procedures

I for a long time some Django and Postgres combinations would leave
open transactions hanging

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 40 / 64

ORMs Django ORM

Coping with the Django ORM

I use a connection pooler

I monitor long-running transactions, upgrade to the latest version of
Django and psycopg2

I use psycopg2!
I be careful to assess the trade-offs of using Django without its ORM

I the admin won’t work
I authentication is tied to the Django User model, so it won’t work out

of the box
I expect to jump through some hoops, but it’s doable

I for simple CRUD applications, the Django ORM can actually be very
useful (think 80/20)

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 41 / 64

ORMs SQLAlchemy

Outline

1 The language

2 Drivers

3 ORMs
Why would you even want one?
Django ORM
SQLAlchemy

4 PL/Python

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 42 / 64

ORMs SQLAlchemy

Overview of SQLAlchemy

I not just an ORM, but a complete SQL toolkit in Python

I comprises two main parts, the ORM and the Expression Language

I if you dig long enough, you can do almost everything

I a complex beast, but well worth taming

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 43 / 64

ORMs SQLAlchemy

ORM done right

I define your models, tables and mappings separately
I models are Plain Old Python objects, you can use them without

mapping them to database entities
I you can also use the Declarative mode, where you define both the

application objects and the database entities in one go

I supports:
I CHECK constraints
I database-specific types and operators
I cascading updates and deletes
I schemas
I ... are you drooling yet?

I it strives to get the “last 20%” right

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 44 / 64

ORMs SQLAlchemy

Mapper vs declarative style

Declare the object

class Car(object):

def __init__(self, plate_no, make, price):

self.plate_no = plate_no

self.make = make

self.price = price

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 45 / 64

ORMs SQLAlchemy

Mapper vs declarative style

Declare the mapping

import sqlalchemy as sa

from sqlalchemy import orm

metadata = sa.MetaData()

car = sa.Table(

’car’, metadata,

sa.Column(’plate_no’, sa.Unicode(length=6),

primary_key=True),

sa.Column(’make’, sa.UnicodeText(),

sa.ForeignKey(’car_makes’, deferrable=True)),

sa.Column(’price’, sa.Numeric, nullable=False))

orm.mapper(Car, car)

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 46 / 64

ORMs SQLAlchemy

Mapper vs declarative style cd.

Declarative style

import sqlalchemy as sa

from sqlalchemy.ext import declarative

Base = declarative.declarative_base()

class Car(Base):

__tablename__ = ’car’

plate_no = sa.Column(sa.Unicode(length=6),

primary_key=True)

make = sa.Column(sa.UnicodeText(),

sa.ForeignKey(’car_makes’,

deferrable=True))

price = sa.Column(sa.Numeric, nullable=False)

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 47 / 64

ORMs SQLAlchemy

It’s all SQL

Declarative style

from sqlalchemy import schema

print(schema.CreateTable(car).compile())

"""

CREATE TABLE car (

plate_no VARCHAR(6) NOT NULL,

make TEXT,

price NUMERIC NOT NULL,

PRIMARY KEY (plate_no),

FOREIGN KEY(make) REFERENCES car_makes (make)

DEFERRABLE

)

"""

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 48 / 64

ORMs SQLAlchemy

Expression language

I either let the ORM handle the querying or construct expressions by
hand

I all SQL constructs are supported, but since it’s Python it’s more
composable

I allows you to rewrite places where the ORM does it wrong in
something that feels like SQL

I if there’s an SQL that can’t be generated, it’s a bug!

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 49 / 64

ORMs SQLAlchemy

Expression language example

Constructing an expression

exp = (car.update()

.where(sa.sql.func.lower(car.c.make) == ’chevy’)

.values(price=car.c.price + 2))

print exp

"""

UPDATE car SET price=(car.price + :price_1)

WHERE lower(car.make) = :lower_1

"""

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 50 / 64

ORMs SQLAlchemy

Advantages over plain SQL

I more modular, allowing for code reuse and delegation of concerns
I have one part of the code generate the update values and other the

clauses
I document and test using standard Python approaches

I use SQLAlchemy as a query generation backend and send literal SQL
somewhere else for execution

I put logic in mapped objects to save code
I transparently encrypt a column using pg crypto
I add generated columns to the objects, like first name || last name

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 51 / 64

ORMs SQLAlchemy

Sessions and connections

I all access to the database is done through a Session

I a Session keeps track of the objects that got modified until flushed
and committed or rolled back

I Sessions check out and return database connections from a built-in
pool

I you can keep Session objects around to maintain long-lived
connections, but remember to always close them after you’re done

I typically, one Session per WSGI process
I use scoped session to have a thread-local Session that can be shared
I ensure the thread’s session is closed after request is done, for instance

using a middleware
I closing a session does not close the underlying connection!

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 52 / 64

PL/Python Use Python straight from the database

Outline

1 The language

2 Drivers

3 ORMs

4 PL/Python
Use Python straight from the database
Best practices
Tricks, skulduggery and black magic

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 53 / 64

PL/Python Use Python straight from the database

What’s PL/Python

I the ability to run a Python interpreter inside the backend

I runs as the backend’s OS user, so untrusted

I can run arbitrary Python code, including doing very nasty or really
crazy things

I but that’s the fun of it!

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 54 / 64

PL/Python Use Python straight from the database

What’s PL/Python

I the ability to run a Python interpreter inside the backend

I runs as the backend’s OS user, so untrusted

I can run arbitrary Python code, including doing very nasty or really
crazy things

I but that’s the fun of it!

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 54 / 64

PL/Python Use Python straight from the database

How does it work

I the first time a PL/Python function is run, a Python interpreter is
initialised inside the backend process

I preload plpython.so to avoid the initial slowdown
I use long-lived connections to only pay the overhead once

I Postgres types are transformed into Python types and vice versa
I only works for built-in types, the rest gets passed using the string

representation
I there’s an extension module to parse hstore’s to and from Python dicts

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 55 / 64

PL/Python Use Python straight from the database

How does it work cd.

I function arguments are visible as global variables
I the function has access to various magic globals that describe the

execution environment
I the plpy module containing SPI and utility functions
I a dictionary with the old and new tuples if called as a trigger
I dictionaries kept in memory between queries, useful for caches

I the module path depends on the postmaster’s PYTHONPATH

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 56 / 64

PL/Python Best practices

Outline

1 The language

2 Drivers

3 ORMs

4 PL/Python
Use Python straight from the database
Best practices
Tricks, skulduggery and black magic

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 57 / 64

PL/Python Best practices

Organising PL/Python code

I keep your PL/Python code in a module

I make all your SQL functions two-liners

CREATE FUNCTION the_func(arg1 text, arg2 text)

RETURNS INTEGER as $$

from myapp.plpython import functions

return functions.the_func(locals())

$$ LANGUAGE plpythonu;

I test the Python code by mocking out magic variables

I it’s a sharp tool, be careful

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 58 / 64

PL/Python Tricks, skulduggery and black magic

Outline

1 The language

2 Drivers

3 ORMs

4 PL/Python
Use Python straight from the database
Best practices
Tricks, skulduggery and black magic

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 59 / 64

PL/Python Tricks, skulduggery and black magic

Ideas for using PL/Python

I doing numerical computations in the database with NumPy
I writing a constraint that checks if a column contains JSON

I or a protobuf stream
I or a PNG image

I connecting to other Postgres instances and doing things to them

I communicating with external services to invalidate caches or trigger
actions

I checking if an email field’s domain has a valid MX record

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 60 / 64

PL/Python Tricks, skulduggery and black magic

PL/Python examples

Using Python modules

CREATE FUNCTION find_extension(extname TEXT)

RETURNS TEXT[] as $$

import difflib

sql = ’select name from pg_available_extensions’

result = plpy.execute(sql)

names = [extension[’name’] for extension in result]

return difflib.get_close_matches(extname, names)

$$ LANGUAGE plpythonu;

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 61 / 64

PL/Python Tricks, skulduggery and black magic

PL/Python examples

Using Python modules

CREATE FUNCTION check_mx()

RETURNS TRIGGER as $$

from dns import resolver

domain = TD[’new’][’email’].split(’@’, 1)[1]

try:

resolver.query(domain, ’MX’)

except resolver.NoAnswer:

plpy.error(’no MX record for domain %s’ % domain)

$$ LANGUAGE plpythonu;

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 62 / 64

PL/Python Tricks, skulduggery and black magic

PL/Python examples

PGCon schedule

CREATE FUNCTION schedule(summary OUT TEXT,

location OUT TEXT,

start OUT TIMESTAMPTZ)

RETURNS SETOF RECORD as $$

import icalendar, requests

resp = requests.get(GD[’url’])

cal = icalendar.Calendar.from_ical(resp.content)

for event in cal.walk(’VEVENT’):

yield (event[’SUMMARY’], event[’LOCATION’],

event[’DTSTART’].dt.isoformat())

$$ LANGUAGE plpythonu;

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 63 / 64

PL/Python Questions

Questions?

Jan Urbański (Ducksboard) On snakes and elephants PGCon 2012 64 / 64

	The language
	A quick glance
	Choosing the version

	Drivers
	DB API 2.0
	Overview of existing drivers
	Psycopg2 features and examples

	ORMs
	Why would you even want one?
	Django ORM
	SQLAlchemy

	PL/Python
	Use Python straight from the database
	Best practices
	Tricks, skulduggery and black magic

