

Temporal Data Management
in PostgreSQL:

Past, Present, and Future

by Jeff Davis
Aster Data / Teradata, Inc.

Original Problem

● Needed to implement a table “audit log”

– Historical record of table

● But also needed to be efficiently queryable

– See data as of a specific time
● “snapshot”

Simple, right?

● The problem was simple.

● The solution was not.

● Queries were awkward and performed
poorly.

Awkward Queries

● Get the “<”, “<=” signs right.

● Be careful of NULLs!

– Often used to represent “infinity”, but they
don't act that way with comparison ops.

● Representing single points of time or
empty periods of time awkward

Poor Performance

EXPLAIN SELECT * FROM mytable
 WHERE ts_from <= '20100101' AND
 '20100101' < ts_to;

Bitmap Heap Scan on mytable
 Recheck Cond: ...
 Filter: ...
 > Bitmap Index Scan on mytable_from_idx
 Index Cond: …

(Or, perhaps a BitmapAnd if the planner
guesses correctly; but still not a great
plan.)

And it gets worse

● As the queries become more complex, the
problems get worse.

● Planner knows even less, and is more
likely to be wildly off in cardinality
estimates

How to improve the situation

● Period data type (extension since 2007)

● Exclusion Constraints (9.0)

● Range Types (9.2)

● Range Keys / Range Foreign Keys (future)

● Range Merge Join (future)

● Simple Table historical log (future)

● Multi-Range (future)

PERIOD data type (extension since 2007)

● https://github.com/jeff-davis/PostgreSQL-Temporal

● Implements single data type with a definite beginning
and a definite end, e.g. “[2010-01-01, 2010-02-01)”

● Bounds can be inclusive or exclusive

● Indexable using a spatial index that can search for
“overlaps”, “contains” and other queries efficiently.

● Simplifies queries and makes them more efficient

● But it will be superseded by Range Types in 9.2!

https://github.com/jeff-davis/PostgreSQL-Temporal

Exclusion Constraints (9.0)

● Solves the “schedule conflict” problem

● Like UNIQUE constraints, but more
flexible

Exclusion Constraints (9.0)

● UNIQUE (loosely) means: any row that is
equal to this one conflicts, and both
cannot exist simultaneously.

● Exclusion constraints allow you to use
other conditions, like overlaps with

● Therefore, you can prohibit schedule
conflicts with a declarative constraint!

Exclusion Constraints (9.0)

 example shown in 9.2 to take advantage
 of Range Types and Extensions

CREATE EXTENSION btree_gist;
CREATE TABLE conf_room_reservation (
 room TEXT,
 speaker TEXT,
 during TSTZRANGE,
 EXCLUDE USING gist
 (room WITH =, during WITH &&),
 EXCLUDE USING gist
 (speaker WITH =, during WITH &&)
);

Exclusion Constraints (9.0)
INSERT INTO conf_room_reservation VALUES
 ('Room123', 'Speaker1',
 '[20100101 14:30, 20100101 15:30)');

 succeeds

INSERT INTO conf_room_reservation VALUES
 ('Room123', 'Speaker2',
 '[20100101 15:15, 20100101 16:30)');

 conflict!
ERROR: conflicting key value violates
exclusion constraint ...

Exclusion Constraints (9.0)

● Simplest way to avoid schedule conflicts

● Performs the best

● Less error-prone than triggers

● Declarative

Exclusion Constraints (9.0)

● Avoid trying to improvise a solution with
triggers, etc.

– Many pitfalls!

● Exclusion constraints much better.

Range Types (9.2)

● Generalization of PERIOD data type
extension

● Ranges of any ordered data type

● “TSTZRANGE” (range of TIMSTAMPTZ)
supersedes PERIOD

Range Types (9.2)

● Offers many more data types:

– TSTZRANGE

– DATERANGE

– TSRANGE

– ...

– Non-temporal (e.g. INT4RANGE, …)

● Ability to create more data types easily

– CREATE TYPE … AS RANGE (...)

Range Types (9.2)

CREATE TABLE hotel_reservation AS (
…,
during DATERANGE,
…
);

CREATE TABLE conf_room_reservation AS (
…,
during TSTZRANGE,
…
);

 and remember to specify exclusion
 constraints, of course

Range Keys / Range Foreign Keys (future)

● Part of range types, just not done yet

● “Range Key” would be like declaring a
column unique, but with range semantics

● Syntax sugar for an Exclusion Constraint
where ranges use “overlaps” and non-
ranges use ordinary equality

Range Keys / Range Foreign Keys (future)

● “Range Foreign Key” would be like a
foreign key, but with range semantics

● ranges in referencing table must be
“contained in” ranges in referenced table

● Referenced table must have a range key

● Can sort of be done with triggers now, but
this would be easier and more complete

Range Merge Join (future)

● Joins on “overlaps” rather than “equals”

● Useful for matching up two events that
partially overlap, or happen within some
threshold of each other

Range Merge Join (future)

SELECT
 customer_id,
 bill(rate,
 range_intersect(u.during, r.during)
) AS bill
FROM billing_rate r, billing_usage u
WHERE r.during && u.during;

Range Merge Join (future)

● Right now, that can only be executed with
nested loop join

● Make it faster!

Simple Historical Table Log (future)

● Simple DDL to create a “historical” version
of the table

– Keep old records with a special “during”
column to hold the time range that the
row existed

– Trigger makes it automatic

● Automatically include current records (with
end time infinity) when selecting from the
historical table

– Kind of like inheritance

Simple Historical Table Log (future)

ALTER TABLE mytable ADD HISTORY;

 See version of mytable as of 20100101
SELECT * FROM mytable_history
 WHERE during @> '20100101';

Multi-Range (future)

● Extend range types to allow multiple
disjoint ranges inside a single value

● Mathematical closure of ranges over
range_union() and other functions

● In other words, range_union() wouldn't
have to throw an error if it can't produce a
single output range

– Can hold the information necessary for
further operations

Conclusion

● Many of the critical capabilities are
available today

● Will perform well

● But complex cases are still problematic
and I'm still working on solutions

● More hackers welcome!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

