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Original Problem

● Needed to implement a table “audit log”

– Historical record of table

● But also needed to be efficiently queryable

– See data as of a specific time
● “snapshot”



  

Simple, right?

● The problem was simple.

● The solution was not.

● Queries were awkward and performed 
poorly.



  

Awkward Queries

● Get the “<”, “<=” signs right.

● Be careful of NULLs!

– Often used to represent “infinity”, but they 
don't act that way with comparison ops.

● Representing single points of time or 
empty periods of time awkward



  

Poor Performance

EXPLAIN SELECT * FROM mytable
 WHERE ts_from      <= '20100101' AND
       '20100101' <  ts_to;

Bitmap Heap Scan on mytable
   Recheck Cond: ...
   Filter: ...
   >  Bitmap Index Scan on mytable_from_idx
         Index Cond: …

(Or, perhaps a BitmapAnd if the planner 
guesses correctly; but still not a great 
plan.)



  

And it gets worse

● As the queries become more complex, the 
problems get worse.

● Planner knows even less, and is more 
likely to be wildly off in cardinality 
estimates



  

How to improve the situation

● Period data type (extension since 2007)

● Exclusion Constraints (9.0)

● Range Types (9.2)

● Range Keys / Range Foreign Keys (future)

● Range Merge Join (future)

● Simple Table historical log (future)

● Multi-Range (future)



  

PERIOD data type (extension since 2007)

● https://github.com/jeff-davis/PostgreSQL-Temporal

● Implements single data type with a definite beginning 
and a definite end, e.g. “[2010-01-01, 2010-02-01)”

● Bounds can be inclusive or exclusive

● Indexable using a spatial index that can search for 
“overlaps”, “contains” and other queries efficiently.

● Simplifies queries and makes them more efficient

● But it will be superseded by Range Types in 9.2!

https://github.com/jeff-davis/PostgreSQL-Temporal


  

Exclusion Constraints (9.0)

● Solves the “schedule conflict” problem

● Like UNIQUE constraints, but more 
flexible



  

Exclusion Constraints (9.0)

● UNIQUE (loosely) means: any row that is 
equal to this one conflicts, and both 
cannot exist simultaneously.

● Exclusion constraints allow you to use 
other conditions, like overlaps with

● Therefore, you can prohibit schedule 
conflicts with a declarative constraint!



  

Exclusion Constraints (9.0)

 example shown in 9.2 to take advantage
 of Range Types and Extensions

CREATE EXTENSION btree_gist;
CREATE TABLE conf_room_reservation (
  room    TEXT,
  speaker TEXT,
  during  TSTZRANGE,
  EXCLUDE USING gist
    (room WITH =, during WITH &&),
  EXCLUDE USING gist
    (speaker WITH =, during WITH &&)
);



  

Exclusion Constraints (9.0)
INSERT INTO conf_room_reservation VALUES
  ('Room123', 'Speaker1',
   '[20100101 14:30, 20100101 15:30)');

 succeeds

INSERT INTO conf_room_reservation VALUES
  ('Room123', 'Speaker2',
   '[20100101 15:15, 20100101 16:30)');

 conflict!
ERROR:  conflicting key value violates 
exclusion constraint ...



  

Exclusion Constraints (9.0)

● Simplest way to avoid schedule conflicts

● Performs the best

● Less error-prone than triggers

● Declarative



  

Exclusion Constraints (9.0)

● Avoid trying to improvise a solution with 
triggers, etc.

– Many pitfalls!

● Exclusion constraints much better.



  

Range Types (9.2)

● Generalization of PERIOD data type 
extension

● Ranges of any ordered data type

● “TSTZRANGE” (range of TIMSTAMPTZ) 
supersedes PERIOD



  

Range Types (9.2)

● Offers many more data types:

– TSTZRANGE

– DATERANGE

– TSRANGE

– ...

– Non-temporal (e.g. INT4RANGE, …)

● Ability to create more data types easily

– CREATE TYPE … AS RANGE (...)



  

Range Types (9.2)

CREATE TABLE hotel_reservation AS (
…,
during DATERANGE,
…
);

CREATE TABLE conf_room_reservation AS (
…,
during TSTZRANGE,
…
);

 and remember to specify exclusion
 constraints, of course



  

Range Keys / Range Foreign Keys (future)

● Part of range types, just not done yet

● “Range Key” would be like declaring a 
column unique, but with range semantics

● Syntax sugar for an Exclusion Constraint 
where ranges use “overlaps” and non-
ranges use ordinary equality



  

Range Keys / Range Foreign Keys (future)

● “Range Foreign Key” would be like a 
foreign key, but with range semantics

● ranges in referencing table must be 
“contained in” ranges in referenced table

● Referenced table must have a range key

● Can sort of be done with triggers now, but 
this would be easier and more complete



  

Range Merge Join (future)

● Joins on “overlaps” rather than “equals”

● Useful for matching up two events that 
partially overlap, or happen within some 
threshold of each other



  

Range Merge Join (future)

SELECT
  customer_id,
  bill(rate,
       range_intersect(u.during, r.during)
      ) AS bill
FROM billing_rate r, billing_usage u
WHERE r.during && u.during;



  

Range Merge Join (future)

● Right now, that can only be executed with 
nested loop join

● Make it faster!



  

Simple Historical Table Log (future)

● Simple DDL to create a “historical” version 
of the table

– Keep old records with a special “during” 
column to hold the time range that the 
row existed

– Trigger makes it automatic

● Automatically include current records (with 
end time infinity) when selecting from the 
historical table

– Kind of like inheritance



  

Simple Historical Table Log (future)

ALTER TABLE mytable ADD HISTORY;

 See version of mytable as of 20100101
SELECT * FROM mytable_history
  WHERE during @> '20100101';



  

Multi-Range (future)

● Extend range types to allow multiple 
disjoint ranges inside a single value

● Mathematical closure of ranges over 
range_union() and other functions

● In other words, range_union() wouldn't 
have to throw an error if it can't produce a 
single output range

– Can hold the information necessary for 
further operations



  

Conclusion

● Many of the critical capabilities are 
available today

● Will perform well

● But complex cases are still problematic 
and I'm still working on solutions

● More hackers welcome!
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