- cpl_def
-
|- ∀A B. A cpl B ⇔ A ⊆ B ∨ B ⊆ A
- chain_def
-
|- ∀C. chain C ⇔ ∀a b. a ∈ C ∧ b ∈ C ⇒ a cpl b
- mex_def
-
|- ∀s. mex s = CHOICE (COMPL s)
- setsuc_def
-
|- ∀s. setsuc s = mex s INSERT s
- succl_def
-
|- ∀c. succl c ⇔ ∀s. s ∈ c ⇒ setsuc s ∈ c
- uncl_def
-
|- ∀c. uncl c ⇔ ∀w. w ⊆ c ∧ chain w ⇒ BIGUNION w ∈ c
- tower_def
-
|- ∀A. tower A ⇔ succl A ∧ uncl A
- mex_less_eq_def
-
|- ∀a b. a mex_less_eq b ⇔ preds a ⊆ preds b
- mex_less_def
-
|- $mex_less = STRORD $mex_less_eq
- WeakWellOrder_def
-
|- ∀R.
WeakWellOrder R ⇔ WeakOrder R ∧ ∀B. B ≠ ∅ ⇒ ∃m. m ∈ B ∧ ∀b. b ∈ B ⇒ R m b
- preds_image_def
-
|- ∀X. preds_image X = {preds x | x ∈ X}
- StrongWellOrder_def
-
|- ∀R. StrongWellOrder R ⇔ StrongLinearOrder R ∧ WF R