---------------------------------------------------------------------- is_presburger (Arith) ---------------------------------------------------------------------- is_presburger : (term -> bool) SYNOPSIS Determines whether a formula is in the Presburger subset of arithmetic. DESCRIBE This function returns true if the argument term is a formula in the Presburger subset of natural number arithmetic. Presburger natural arithmetic is the subset of arithmetic formulae made up from natural number constants, numeric variables, addition, multiplication by a constant, the natural number relations {<}, {<=}, {=}, {>=}, {>} and the logical connectives {~}, {/\}, {\/}, {==>}, {=} (if-and-only-if), {!} (‘forall’) and {?} (‘there exists’). Products of two expressions which both contain variables are not included in the subset, but the function {SUC} which is not normally included in a specification of Presburger arithmetic is allowed in this HOL implementation. This function also considers subtraction and the predecessor function, {PRE}, to be part of the subset. FAILURE Never fails. EXAMPLE - is_presburger ``!m n p. m < (2 * n) /\ (n + n) <= p ==> m < SUC p``; > val it = true : bool - is_presburger ``!m n p q. m < (n * p) /\ (n * p) < q ==> m < q``; > val it = false : bool - is_presburger ``(m <= n) ==> !p. (m < SUC(n + p))``; > val it = true : bool - is_presburger ``(m + n) - m = n``; > val it = true : bool USES Useful for determining whether a decision procedure for Presburger arithmetic is applicable to a term. SEEALSO Arith.non_presburger_subterms, Arith.FORALL_ARITH_CONV, Arith.EXISTS_ARITH_CONV, Arith.is_prenex. ----------------------------------------------------------------------