---------------------------------------------------------------------- REWR_CONV_A (Conv) ---------------------------------------------------------------------- REWR_CONV_A : (thm -> conv) SYNOPSIS Uses an instance of a given equation to rewrite a term. KEYWORDS conversion. DESCRIBE {REWR_CONV_A th} behaves as {REWR_CONV th} except that it allows substitution of variables or type variables which appear in the hypotheses of {th}. EXAMPLE Consider the theorem {th} [0 < n] |- (a * n = b * (n : int)) <=> (a = b) and the term {tm} f (a * m = b * (m : int)) x Then {DEPTH_CONV (REWR_CONV_A th) tm} returns [0 < m] |- f (a * m = b * m) x <=> f (a = b) x Likewise, when the goal is {tm} above, {e (VALIDATE (CONV_TAC (DEPTH_CONV (REWR_CONV_A th))))} gives the two subgoals: f (a = b) x 0 < m SEEALSO Conv.REWR_CONV, Rewrite.REWRITE_CONV, Conv.DEPTH_CONV, Tactic.CONV_TAC, Tactical.VALIDATE. ----------------------------------------------------------------------