---------------------------------------------------------------------- DISJ_IMP (Drule) ---------------------------------------------------------------------- DISJ_IMP : (thm -> thm) SYNOPSIS Converts a disjunctive theorem to an equivalent implicative theorem. KEYWORDS rule, disjunction, implication. DESCRIBE The left disjunct of a disjunctive theorem becomes the negated antecedent of the newly generated theorem. A |- t1 \/ t2 ----------------- DISJ_IMP A |- ~t1 ==> t2 FAILURE Fails if the theorem is not a disjunction. EXAMPLE Specializing the built-in theorem {LESS_CASES} gives the theorem: th = |- m < n \/ n <= m to which {DISJ_IMP} may be applied: - DISJ_IMP th; > val it = |- ~m < n ==> n <= m : thm SEEALSO Thm.DISJ_CASES. ----------------------------------------------------------------------