---------------------------------------------------------------------- IMP_ANTISYM_RULE (Drule) ---------------------------------------------------------------------- IMP_ANTISYM_RULE : thm -> thm -> thm SYNOPSIS Deduces equality of boolean terms from forward and backward implications. KEYWORDS rule, implication, equality. DESCRIBE When applied to the theorems {A1 |- t1 ==> t2} and {A2 |- t2 ==> t1}, the inference rule {IMP_ANTISYM_RULE} returns the theorem {A1 u A2 |- t1 = t2}. A1 |- t1 ==> t2 A2 |- t2 ==> t1 ------------------------------------- IMP_ANTISYM_RULE A1 u A2 |- t1 = t2 FAILURE Fails unless the theorems supplied are a complementary implicative pair as indicated above. SEEALSO Thm.EQ_IMP_RULE, Thm.EQ_MP, Tactic.EQ_TAC. ----------------------------------------------------------------------