---------------------------------------------------------------------- SIMPLE_EXISTS (Drule) ---------------------------------------------------------------------- SIMPLE_EXISTS : term -> thm -> thm SYNOPSIS Introduces existential quantification using as witness a given free variable. KEYWORDS rule, existential. DESCRIBE When applied to a free variable term and a theorem, {SIMPLE_EXISTS} gives the theorem made by existentially quantifying the conclusion of the given theorem over the given free variable. A |- p ------------- SIMPLE_EXISTS ``x`` A |- ?x. p FAILURE Fails if the term argument is not a free variable. COMMENTS The free variable need not appear in the conclusion of the theorem, and may appear in the hypotheses. EXAMPLE - SIMPLE_EXISTS (Term `x`) (REFL (Term `x`)); > val it = |- ?x. x = x : thm - SIMPLE_EXISTS (Term `x`) (REFL T); > val it = |- ?x. T = T : thm SEEALSO Thm.EXISTS, Thm.CHOOSE, Tactic.EXISTS_TAC. ----------------------------------------------------------------------