---------------------------------------------------------------------- prove_abs_fn_onto (Drule) ---------------------------------------------------------------------- prove_abs_fn_onto : thm -> thm SYNOPSIS Proves that a type abstraction function is onto (surjective). DESCRIBE If {th} is a theorem of the form returned by the function {define_new_type_bijections}: |- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r)) then {prove_abs_fn_onto th} proves from this theorem that the function {abs} is onto, returning the theorem: |- !a. ?r. (a = abs r) /\ P r FAILURE Fails if applied to a theorem not of the form shown above. SEEALSO Definition.new_type_definition, Drule.define_new_type_bijections, Drule.prove_abs_fn_one_one, Drule.prove_rep_fn_one_one, Drule.prove_rep_fn_onto. ----------------------------------------------------------------------