---------------------------------------------------------------------- print_theory (Hol_pp) ---------------------------------------------------------------------- print_theory : string -> unit SYNOPSIS Print a theory on the standard output. KEYWORDS theory, print. DESCRIBE An invocation {print_theory s} will display the contents of the theory segment {s} on the standard output. The string {"-"} may be used to denote the current theory segment. FAILURE If {s} is not the name of a loaded theory. EXAMPLE - print_theory "combin"; Theory: combin Parents: bool Term constants: C :('a -> 'b -> 'c) -> 'b -> 'a -> 'c I :'a -> 'a K :'a -> 'b -> 'a S :('a -> 'b -> 'c) -> ('a -> 'b) -> 'a -> 'c W :('a -> 'a -> 'b) -> 'a -> 'b o :('c -> 'b) -> ('a -> 'c) -> 'a -> 'b Definitions: K_DEF |- K = (\x y. x) S_DEF |- S = (\f g x. f x (g x)) I_DEF |- I = S K K C_DEF |- combin$C = (\f x y. f y x) W_DEF |- W = (\f x. f x x) o_DEF |- !f g. f o g = (\x. f (g x)) Theorems: o_THM |- !f g x. (f o g) x = f (g x) o_ASSOC |- !f g h. f o g o h = (f o g) o h K_THM |- !x y. K x y = x S_THM |- !f g x. S f g x = f x (g x) C_THM |- !f x y. combin$C f x y = f y x W_THM |- !f x. W f x = f x x I_THM |- !x. I x = x I_o_ID |- !f. (I o f = f) /\ (f o I = f) > val it = () : unit SEEALSO DB.dest_theory, DB.thy. ----------------------------------------------------------------------