---------------------------------------------------------------------- LIST_PBETA_CONV (PairRules) ---------------------------------------------------------------------- LIST_PBETA_CONV : conv KEYWORDS conversion. LIBRARY pair SYNOPSIS Performs an iterated paired beta-conversion. DESCRIBE The conversion {LIST_PBETA_CONV} maps terms of the form (\p1 p2 ... pn. t) q1 q2 ... qn to the theorems of the form |- (\p1 p2 ... pn. t) q1 q2 ... qn = t[q1/p1][q2/p2] ... [qn/pn] where {t[qi/pi]} denotes the result of substituting {qi} for all free occurrences of {pi} in {t}, after renaming sufficient bound variables to avoid variable capture. FAILURE {LIST_PBETA_CONV tm} fails if {tm} does not have the form {(\p1 ... pn. t) q1 ... qn} for {n} greater than 0. EXAMPLE - LIST_PBETA_CONV (Term `(\(a,b) (c,d) . a + b + c + d) (1,2) (3,4)`); > val it = |- (\(a,b) (c,d). a + b + c + d) (1,2) (3,4) = 1 + 2 + 3 + 4 : thm SEEALSO Drule.LIST_BETA_CONV, PairRules.PBETA_CONV, Conv.BETA_RULE, Tactic.BETA_TAC, PairRules.RIGHT_PBETA, PairRules.RIGHT_LIST_PBETA, PairRules.LEFT_PBETA, PairRules.LEFT_LIST_PBETA. ----------------------------------------------------------------------