---------------------------------------------------------------------- GEN_BETA_CONV (PairedLambda) ---------------------------------------------------------------------- GEN_BETA_CONV : conv SYNOPSIS Beta-reduces single or paired beta-redexes, creating a paired argument if needed. KEYWORDS conversion, force. DESCRIBE The conversion {GEN_BETA_CONV} will perform beta-reduction of simple beta-redexes in the manner of {BETA_CONV}, or of tupled beta-redexes in the manner of {PAIRED_BETA_CONV}. Unlike the latter, it will force through a beta-reduction by introducing arbitrarily nested pair destructors if necessary. The following shows the action for one level of pairing; others are similar. GEN_BETA_CONV "(\(x,y). t) p" = t[(FST p)/x, (SND p)/y] FAILURE {GEN_BETA_CONV tm} fails if {tm} is neither a simple nor a tupled beta-redex. EXAMPLE The following examples show the action of {GEN_BETA_CONV} on tupled redexes. In the following, it acts in the same way as {PAIRED_BETA_CONV}: - pairLib.GEN_BETA_CONV (Term `(\(x,y). x + y) (1,2)`); val it = |- (\(x,y). x + y)(1,2) = 1 + 2 : thm whereas in the following, the operand of the beta-redex is not a pair, so {FST} and {SND} are introduced: - pairLib.GEN_BETA_CONV (Term `(\(x,y). x + y) numpair`); > val it = |- (\(x,y). x + y) numpair = FST numpair + SND numpair : thm The introduction of {FST} and {SND} will be done more than once as necessary: - pairLib.GEN_BETA_CONV (Term `(\(w,x,y,z). w + x + y + z) (1,triple)`); > val it = |- (\(w,x,y,z). w + x + y + z) (1,triple) = 1 + FST triple + FST (SND triple) + SND (SND triple) : thm SEEALSO Thm.BETA_CONV, PairedLambda.PAIRED_BETA_CONV. ----------------------------------------------------------------------