---------------------------------------------------------------------- prove_case_rand_thm (Prim_rec) ---------------------------------------------------------------------- prove_case_rand_thm : {case_def : thm, nchotomy : thm} -> thm SYNOPSIS Proves a theorem that “lifts” applied case constants up within a term. KEYWORDS DESCRIBE If {case_def} is the definition of a data type’s case constant, where each clause is of the form !a1 .. ai f1 .. fm. type_CASE (ctor_i a1 .. ai) f1 .. fm = f_i a1 .. ai and if {nchotomy} is a theorem describing how a data type’s values are classified by constructor, of the form !v. (?a1 .. ai. v = ctor_1 a1 .. ai) \/ (?b1 .. bj. v = ctor_2 b1 .. bj) \/ ... then a call to {prove_case_rand_thm{case_def = case_def, nchotomy = nchotomy}} will return a theorem of the form f (type_CASE x f1 .. fm) = type_CASE x (\a1 .. ai. f (f1 a1 .. ai)) (\b1 .. bj. f (f2 b1 .. bj)) ... Given the typical pretty-printing provided for case-terms, the right-hand side of the above theorem will actually print as case x of ctor_1 a1 .. ai => f (f1 a1 .. ai) | ctor_2 b1 .. bj => f (f2 b1 .. bj) | ... FAILURE Will fail if the provided theorems are not of the required form. The theorems stored in the {TypeBase} are of the correct form. The theorem returned by {Prim_rec.prove_cases_thm} is of the correct form for the {nchotomy} argument to this function. EXAMPLE > prove_case_rand_thm {case_def = TypeBase.case_def_of ``:num``, nchotomy = TypeBase.nchotomy_of ``:num``}; val it = |- f' (num_CASE x v f) = case x of 0 => f' v | SUC n => f' (f n): thm SEEALSO Prim_rec.prove_cases_thm. ----------------------------------------------------------------------