---------------------------------------------------------------------- DISJ_CASES_TAC (Tactic) ---------------------------------------------------------------------- DISJ_CASES_TAC : thm_tactic SYNOPSIS Produces a case split based on a disjunctive theorem. KEYWORDS tactic, disjunction, cases. DESCRIBE Given a theorem {th} of the form {A |- u \/ v}, {DISJ_CASES_TAC th} applied to a goal produces two subgoals, one with {u} as an assumption and one with {v}: A ?- t ============================ DISJ_CASES_TAC (A |- u \/ v) A u {u} ?- t A u {v}?- t FAILURE Fails if the given theorem does not have a disjunctive conclusion. EXAMPLE Given the simple fact about arithmetic {th}, {|- (m = 0) \/ (?n. m = SUC n)}, the tactic {DISJ_CASES_TAC th} can be used to produce a case split: - DISJ_CASES_TAC th ([],Term`(P:num -> bool) m`); ([([`m = 0`], `P m`), ([`?n. m = SUC n`], `P m`)], fn) : tactic_result USES Performing a case analysis according to a disjunctive theorem. SEEALSO Tactic.ASSUME_TAC, Tactic.ASM_CASES_TAC, Tactic.COND_CASES_TAC, Thm_cont.DISJ_CASES_THEN, Tactic.STRUCT_CASES_TAC. ----------------------------------------------------------------------