---------------------------------------------------------------------- ABS (Thm) ---------------------------------------------------------------------- ABS : term -> thm -> thm SYNOPSIS Abstracts both sides of an equation. KEYWORDS rule, abstraction. DESCRIBE A |- t1 = t2 ------------------------ ABS x [Where x is not free in A] A |- (\x.t1) = (\x.t2) FAILURE If the theorem is not an equation, or if the variable {x} is free in the assumptions {A}. EXAMPLE - let val m = Term `m:bool` in ABS m (REFL m) end; > val it = |- (\m. m) = (\m. m) : thm SEEALSO Drule.ETA_CONV, Drule.EXT, Drule.MK_ABS. ----------------------------------------------------------------------