---------------------------------------------------------------------- BETA_CONV (Thm) ---------------------------------------------------------------------- BETA_CONV : conv SYNOPSIS Performs a single step of beta-conversion. KEYWORDS conversion. DESCRIBE The conversion {BETA_CONV} maps a beta-redex {"(\x.u)v"} to the theorem |- (\x.u)v = u[v/x] where {u[v/x]} denotes the result of substituting {v} for all free occurrences of {x} in {u}, after renaming sufficient bound variables to avoid variable capture. This conversion is one of the primitive inference rules of the HOL system. FAILURE {BETA_CONV tm} fails if {tm} is not a beta-redex. EXAMPLE - BETA_CONV (Term `(\x.x+1)y`); > val it = |- (\x. x + 1)y = y + 1 :thm - BETA_CONV (Term `(\x y. x+y)y`); > val it = |- (\x y. x + y)y = (\y'. y + y') : thm SEEALSO Conv.BETA_RULE, Tactic.BETA_TAC, Drule.LIST_BETA_CONV, PairedLambda.PAIRED_BETA_CONV, Drule.RIGHT_BETA, Drule.RIGHT_LIST_BETA. ----------------------------------------------------------------------