---------------------------------------------------------------------- Beta (Thm) ---------------------------------------------------------------------- Beta : thm -> thm SYNOPSIS Perform one step of beta-reduction on the right hand side of an equational theorem. KEYWORDS conversion, beta. DESCRIBE {Beta} performs a single beta-reduction step on the right-hand side of an equational theorem. A |- t = ((\x.M) N) --------------------- Beta A |- t = M [N/x] FAILURE If the theorem is not an equation, or if the right hand side of the equation is not a beta-redex. EXAMPLE val th = REFL (Term `(K:'a ->'b->'a) x`); > val th = |- K x = K x : thm - SUBS_OCCS [([2],combinTheory.K_DEF)] th; > val it = |- K x = (\x y. x) x : thm - Beta it; > val it = |- K x = (\y. x) : thm COMMENTS {Beta} is equivalent to {RIGHT_BETA} but faster. SEEALSO Drule.RIGHT_BETA, Drule.ETA_CONV. ----------------------------------------------------------------------