---------------------------------------------------------------------- CCONTR (Thm) ---------------------------------------------------------------------- CCONTR : term -> thm -> thm SYNOPSIS Implements the classical contradiction rule. KEYWORDS rule, contradiction. DESCRIBE When applied to a term {t} and a theorem {A |- F}, the inference rule {CCONTR} returns the theorem {A - {~t} |- t}. A |- F --------------- CCONTR t A - {~t} |- t FAILURE Fails unless the term has type {bool} and the theorem has {F} as its conclusion. COMMENTS The usual use will be when {~t} exists in the assumption list; in this case, {CCONTR} corresponds to the classical contradiction rule: if {~t} leads to a contradiction, then {t} must be true. SEEALSO Drule.CONTR, Drule.CONTRAPOS, Tactic.CONTR_TAC, Thm.NOT_ELIM. ----------------------------------------------------------------------