---------------------------------------------------------------------- EQ_IMP_RULE (Thm) ---------------------------------------------------------------------- EQ_IMP_RULE : thm -> thm * thm SYNOPSIS Derives forward and backward implication from equality of boolean terms. KEYWORDS rule, implication, equality. DESCRIBE When applied to a theorem {A |- t1 = t2}, where {t1} and {t2} both have type {bool}, the inference rule {EQ_IMP_RULE} returns the theorems {A |- t1 ==> t2} and {A |- t2 ==> t1}. A |- t1 = t2 ----------------------------------- EQ_IMP_RULE A |- t1 ==> t2 A |- t2 ==> t1 FAILURE Fails unless the conclusion of the given theorem is an equation between boolean terms. SEEALSO Thm.EQ_MP, Tactic.EQ_TAC, Drule.IMP_ANTISYM_RULE. ----------------------------------------------------------------------