---------------------------------------------------------------------- Specialize (Thm) ---------------------------------------------------------------------- Specialize : term -> thm -> thm SYNOPSIS Specializes the conclusion of a universal theorem. KEYWORDS rule, specialization. DESCRIBE When applied to a term {u} and a theorem {A |- !x. t}, {Specialize} returns the theorem {A |- t[u/x]}. Care is taken to ensure that no variables free in {u} become bound after this operation. A |- !x. t -------------- Specialize u A |- t[u/x] FAILURE Fails if the theorem’s conclusion is not universally quantified, or if {x} and {u} have different types. COMMENTS {Specialize} behaves identically to {SPEC}, but is faster. SEEALSO Thm.SPEC, Drule.ISPEC, Drule.SPECL, Drule.SPEC_ALL, Drule.SPEC_VAR, Thm.GEN, Thm.GENL, Drule.GEN_ALL. ----------------------------------------------------------------------