---------------------------------------------------------------------- TRANS (Thm) ---------------------------------------------------------------------- TRANS : (thm -> thm -> thm) SYNOPSIS Uses transitivity of equality on two equational theorems. KEYWORDS rule, transitivity, equality. DESCRIBE When applied to a theorem {A1 |- t1 = t2} and a theorem {A2 |- t2 = t3}, the inference rule {TRANS} returns the theorem {A1 u A2 |- t1 = t3}. A1 |- t1 = t2 A2 |- t2 = t3 ------------------------------- TRANS A1 u A2 |- t1 = t3 FAILURE Fails unless the theorems are equational, with the right side of the first being the same as the left side of the second. EXAMPLE - val t1 = ASSUME ``a:bool = b`` and t2 = ASSUME ``b:bool = c``; val t1 = [.] |- a = b : thm val t2 = [.] |- b = c : thm - TRANS t1 t2; val it = [..] |- a = c : thm SEEALSO Thm.EQ_MP, Drule.IMP_TRANS, Thm.REFL, Thm.SYM. ----------------------------------------------------------------------