---------------------------------------------------------------------- CONJUNCTS_THEN2 (Thm_cont) ---------------------------------------------------------------------- CONJUNCTS_THEN2 : (thm_tactic -> thm_tactical) SYNOPSIS Applies two theorem-tactics to the corresponding conjuncts of a theorem. KEYWORDS theorem-tactic, conjunction. DESCRIBE {CONJUNCTS_THEN2} takes two theorem-tactics, {f1} and {f2}, and a theorem {t} whose conclusion must be a conjunction. {CONJUNCTS_THEN2} breaks {t} into two new theorems, {t1} and {t2} which are {CONJUNCT1} and {CONJUNCT2} of {t} respectively, and then returns the tactic {f1 t1 THEN f2 t2}. Thus CONJUNCTS_THEN2 f1 f2 (A |- l /\ r) = f1 (A |- l) THEN f2 (A |- r) so if A1 ?- t1 A2 ?- t2 ========== f1 (A |- l) ========== f2 (A |- r) A2 ?- t2 A3 ?- t3 then A1 ?- t1 ========== CONJUNCTS_THEN2 f1 f2 (A |- l /\ r) A3 ?- t3 FAILURE {CONJUNCTS_THEN f} will fail if applied to a theorem whose conclusion is not a conjunction. COMMENTS The system shows the type as {(thm_tactic -> thm_tactical)}. USES The construction of complex {tactical}s like {CONJUNCTS_THEN}. SEEALSO Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJUNCTS, Tactic.CONJ_TAC, Thm_cont.CONJUNCTS_THEN2, Thm_cont.STRIP_THM_THEN. ----------------------------------------------------------------------