---------------------------------------------------------------------- SIMP_RULE (bossLib) ---------------------------------------------------------------------- SIMP_RULE : simpset -> thm list -> thm -> thm SYNOPSIS Simplifies the conclusion of a theorem according to the given simpset and theorem rewrites. KEYWORDS simplification. LIBRARY simpLib DESCRIBE {SIMP_RULE} simplifies the conclusion of a theorem, adding the given theorems to the simpset parameter as rewrites. The way in which terms are transformed as a part of simplification is described in the entry for {SIMP_CONV}. FAILURE Never fails, but may diverge. EXAMPLE The following also demonstrates the higher order rewriting possible with simplification ({FORALL_AND_THM} states {|- (!x. P x /\ Q x) = (!x. P x) /\ (!x. Q x)}): - SIMP_RULE bool_ss [boolTheory.FORALL_AND_THM] (ASSUME (Term`!x. P (x + 1) /\ R x /\ x < y`)); > val it = [.] |- (!x. P (x + 1)) /\ (!x. R x) /\ (!x. x < y) : thm COMMENTS {SIMP_RULE ss thmlist} is equivalent to {CONV_RULE (SIMP_CONV ss thmlist)}. SEEALSO simpLib.ASM_SIMP_RULE, bossLib.SIMP_CONV, bossLib.SIMP_TAC, bossLib.bool_ss. ----------------------------------------------------------------------