---------------------------------------------------------------------- SCANL_CONV (listLib) ---------------------------------------------------------------------- SCANL_CONV : conv -> conv SYNOPSIS Computes by inference the result of applying a function to the elements of a list. KEYWORDS conversion, list. DESCRIBE {SCANL_CONV} takes a conversion {conv} and a term {tm} in the following form: SCANL f e0 [x1;...xn] It returns the theorem |- SCANL f e0 [x1;...xn] = [e0; e1; ...;en] where {ei} is the result of applying the function {f} to the result of the previous iteration and the current element, i.e., {ei = f e(i-1) xi}. The iteration starts from the left-hand side (the head) of the list. The user supplied conversion {conv} is used to derive a theorem |- f e(i-1) xi = ei which is used in the next iteration. FAILURE {SCANL_CONV conv tm} fails if {tm} is not of the form described above, or failure occurs when evaluating {conv “f e(i-1) xi”}. EXAMPLE To sum the elements of a list and save the result at each step, one can use {SCANL_CONV} with {ADD_CONV} from the library {num_lib}. - load_library_in_place num_lib; - SCANL_CONV Num_lib.ADD_CONV “SCANL $+ 0 [1;2;3]”; |- SCANL $+ 0[1;2;3] = [0;1;3;6] In general, if the function {f} is an explicit lambda abstraction {(\x x'. t[x,x'])}, the conversion should be in the form ((RATOR_CONV BETA_CONV) THENC BETA_CONV THENC conv')) where {conv'} applied to {t[x,x']} returns the theorem |-t[x,x'] = e''. SEEALSO listLib.SCANR_CONV, listLib.FOLDL_CONV, listLib.FOLDR_CONV, listLib.list_FOLD_CONV. ----------------------------------------------------------------------