---------------------------------------------------------------------- SCANR_CONV (listLib) ---------------------------------------------------------------------- SCANR_CONV : conv -> conv SYNOPSIS Computes by inference the result of applying a function to the elements of a list. KEYWORDS conversion, list. DESCRIBE {SCANR_CONV} takes a conversion {conv} and a term {tm} in the following form: SCANR f e0 [xn;...;x1] It returns the theorem |- SCANR f e0 [xn;...;x1] = [en; ...;e1;e0] where {ei} is the result of applying the function {f} to the result of the previous iteration and the current element, i.e., {ei = f e(i-1) xi}. The iteration starts from the right-hand side (the tail) of the list. The user supplied conversion {conv} is used to derive a theorem |- f e(i-1) xi = ei which is used in the next iteration. FAILURE {SCANR_CONV conv tm} fails if {tm} is not of the form described above, or failure occurs when evaluating {conv “f e(i-1) xi”}. EXAMPLE To sum the elements of a list and save the result at each step, one can use {SCANR_CONV} with {ADD_CONV} from the library {num_lib}. - load_library_in_place num_lib; - SCANR_CONV Num_lib.ADD_CONV “SCANR $+ 0 [1;2;3]”; |- SCANR $+ 0[1;2;3] = [6;5;3;0] In general, if the function {f} is an explicit lambda abstraction {(\x x'. t[x,x'])}, the conversion should be in the form ((RATOR_CONV BETA_CONV) THENC BETA_CONV THENC conv')) where {conv'} applied to {t[x,x']} returns the theorem |-t[x,x'] = e''. SEEALSO listLib.SCANL_CONV, listLib.FOLDL_CONV, listLib.FOLDR_CONV, listLib.list_FOLD_CONV. ----------------------------------------------------------------------