---------------------------------------------------------------------- PTAUT_PROVE (tautLib) ---------------------------------------------------------------------- PTAUT_PROVE : term -> thm SYNOPSIS Tautology checker. Proves propositional formulae. LIBRARY taut DESCRIBE Given a term that contains only Boolean constants, Boolean-valued variables, Boolean equalities, implications, conjunctions, disjunctions, negations and Boolean-valued conditionals, {PTAUT_PROVE} returns the term as a theorem if it is valid. The variables in the term may be universally quantified. FAILURE Fails if the term is not a valid propositional formula. EXAMPLE #PTAUT_PROVE ``!x y z w. (((x \/ ~y) ==> z) /\ (z ==> ~w) /\ w) ==> y``; |- !x y z w. (x \/ ~y ==> z) /\ (z ==> ~w) /\ w ==> y #PTAUT_PROVE ``(((x \/ ~y) ==> z) /\ (z ==> ~w) /\ w) ==> y``; |- (x \/ ~y ==> z) /\ (z ==> ~w) /\ w ==> y #PTAUT_PROVE ``!x. x = T``; Uncaught exception: HOL_ERR #PTAUT_PROVE ``x = T``; Uncaught exception: HOL_ERR SEEALSO tautLib.PTAUT_CONV, tautLib.PTAUT_TAC, tautLib.TAUT_PROVE. ----------------------------------------------------------------------