- biprefix_def
-
⊢ ∀a b. biprefix a b ⇔ b ≼ a ∨ a ≼ b
- wf_pred_def
-
⊢ ∀p. wf_pred p ⇔ ∃x. p x
- wf_encoder_def
-
⊢ ∀p e. wf_encoder p e ⇔ ∀x y. p x ∧ p y ∧ e y ≼ e x ⇒ x = y
- encode_unit_def
-
⊢ ∀v0. encode_unit v0 = []
- encode_bool_def
-
⊢ ∀x. encode_bool x = [x]
- encode_prod_def
-
⊢ ∀xb yb x y. encode_prod xb yb (x,y) = xb x ++ yb y
- lift_prod_def
-
⊢ ∀p1 p2 x. lift_prod p1 p2 x ⇔ p1 (FST x) ∧ p2 (SND x)
- encode_sum_def
-
⊢ (∀xb yb x. encode_sum xb yb (INL x) = T::xb x) ∧
∀xb yb y. encode_sum xb yb (INR y) = F::yb y
- lift_sum_def
-
⊢ ∀p1 p2 x. lift_sum p1 p2 x ⇔ case x of INL x1 => p1 x1 | INR x2 => p2 x2
- encode_option_def
-
⊢ (∀xb. encode_option xb NONE = [F]) ∧
∀xb x. encode_option xb (SOME x) = T::xb x
- lift_option_def
-
⊢ ∀p x. lift_option p x ⇔ case x of NONE => T | SOME y => p y
- encode_list_def
-
⊢ (∀xb. encode_list xb [] = [F]) ∧
∀xb x xs. encode_list xb (x::xs) = T::(xb x ++ encode_list xb xs)
- encode_blist_def
-
⊢ (∀e l. encode_blist 0 e l = []) ∧
∀m e l. encode_blist (SUC m) e l = e (HD l) ++ encode_blist m e (TL l)
- lift_blist_def
-
⊢ ∀m p x. lift_blist m p x ⇔ EVERY p x ∧ LENGTH x = m
- encode_num_primitive_def
-
⊢ encode_num =
WFREC
(@R.
WF R ∧ (∀n. n ≠ 0 ∧ EVEN n ⇒ R ((n − 2) DIV 2) n) ∧
∀n. n ≠ 0 ∧ ¬EVEN n ⇒ R ((n − 1) DIV 2) n)
(λencode_num a.
I
(if a = 0 then [T; T]
else if EVEN a then F::encode_num ((a − 2) DIV 2)
else T::F::encode_num ((a − 1) DIV 2)))
- encode_bnum_def
-
⊢ (∀n. encode_bnum 0 n = []) ∧
∀m n. encode_bnum (SUC m) n = ¬EVEN n::encode_bnum m (n DIV 2)
- collision_free_def
-
⊢ ∀m p.
collision_free m p ⇔
∀x y. p x ∧ p y ∧ x MOD 2 ** m = y MOD 2 ** m ⇒ x = y
- wf_pred_bnum_def
-
⊢ ∀m p. wf_pred_bnum m p ⇔ wf_pred p ∧ ∀x. p x ⇒ x < 2 ** m
- tree_TY_DEF
-
⊢ ∃rep.
TYPE_DEFINITION
(λa0'.
∀'tree' '@temp @ind_typeEncode0list' .
(∀a0'.
(∃a0 a1.
a0' =
(λa0 a1.
ind_type$CONSTR 0 a0
(ind_type$FCONS a1 (λn. ind_type$BOTTOM)))
a0 a1 ∧ '@temp @ind_typeEncode0list' a1) ⇒
'tree' a0') ∧
(∀a1'.
a1' = ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ∨
(∃a0 a1.
a1' =
(λa0 a1.
ind_type$CONSTR (SUC (SUC 0)) ARB
(ind_type$FCONS a0
(ind_type$FCONS a1 (λn. ind_type$BOTTOM))))
a0 a1 ∧ 'tree' a0 ∧
'@temp @ind_typeEncode0list' a1) ⇒
'@temp @ind_typeEncode0list' a1') ⇒
'tree' a0') rep
- tree_case_def
-
⊢ ∀a0 a1 f. tree_CASE (Node a0 a1) f = f a0 a1
- tree_size_def
-
⊢ (∀f a0 a1. tree_size f (Node a0 a1) = 1 + (f a0 + tree1_size f a1)) ∧
(∀f. tree1_size f [] = 0) ∧
∀f a0 a1. tree1_size f (a0::a1) = 1 + (tree_size f a0 + tree1_size f a1)
- biprefix_refl
-
⊢ ∀x. biprefix x x
- biprefix_sym
-
⊢ ∀x y. biprefix x y ⇒ biprefix y x
- biprefix_append
-
⊢ ∀a b c d. biprefix (a ++ b) (c ++ d) ⇒ biprefix a c
- biprefix_cons
-
⊢ ∀a b c d. biprefix (a::b) (c::d) ⇔ a = c ∧ biprefix b d
- biprefix_appends
-
⊢ ∀a b c. biprefix (a ++ b) (a ++ c) ⇔ biprefix b c
- wf_encoder_alt
-
⊢ wf_encoder p e ⇔ ∀x y. p x ∧ p y ∧ biprefix (e x) (e y) ⇒ x = y
- wf_encoder_eq
-
⊢ ∀p e f. wf_encoder p e ∧ (∀x. p x ⇒ e x = f x) ⇒ wf_encoder p f
- wf_encoder_total
-
⊢ ∀p e. wf_encoder (K T) e ⇒ wf_encoder p e
- wf_encode_unit
-
⊢ ∀p. wf_encoder p encode_unit
- wf_encode_bool
-
⊢ ∀p. wf_encoder p encode_bool
- encode_prod_alt
-
⊢ ∀xb yb p. encode_prod xb yb p = xb (FST p) ++ yb (SND p)
- wf_encode_prod
-
⊢ ∀p1 p2 e1 e2.
wf_encoder p1 e1 ∧ wf_encoder p2 e2 ⇒
wf_encoder (lift_prod p1 p2) (encode_prod e1 e2)
- wf_encode_sum
-
⊢ ∀p1 p2 e1 e2.
wf_encoder p1 e1 ∧ wf_encoder p2 e2 ⇒
wf_encoder (lift_sum p1 p2) (encode_sum e1 e2)
- wf_encode_option
-
⊢ ∀p e. wf_encoder p e ⇒ wf_encoder (lift_option p) (encode_option e)
- wf_encode_list
-
⊢ ∀p e. wf_encoder p e ⇒ wf_encoder (EVERY p) (encode_list e)
- encode_list_cong
-
⊢ ∀l1 l2 f1 f2.
l1 = l2 ∧ (∀x. MEM x l2 ⇒ f1 x = f2 x) ⇒
encode_list f1 l1 = encode_list f2 l2
- encode_blist_def_compute
-
⊢ (∀e l. encode_blist 0 e l = []) ∧
(∀m e l.
encode_blist (NUMERAL (BIT1 m)) e l =
e (HD l) ++ encode_blist (NUMERAL (BIT1 m) − 1) e (TL l)) ∧
∀m e l.
encode_blist (NUMERAL (BIT2 m)) e l =
e (HD l) ++ encode_blist (NUMERAL (BIT1 m)) e (TL l)
- lift_blist_suc
-
⊢ ∀n p h t. lift_blist (SUC n) p (h::t) ⇔ p h ∧ lift_blist n p t
- wf_encode_blist
-
⊢ ∀m p e. wf_encoder p e ⇒ wf_encoder (lift_blist m p) (encode_blist m e)
- encode_num_def
-
⊢ encode_num n = if n = 0 then [T; T]
else if EVEN n then F::encode_num ((n − 2) DIV 2)
else T::F::encode_num ((n − 1) DIV 2)
- encode_num_ind
-
⊢ ∀P.
(∀n.
(n ≠ 0 ∧ EVEN n ⇒ P ((n − 2) DIV 2)) ∧
(n ≠ 0 ∧ ¬EVEN n ⇒ P ((n − 1) DIV 2)) ⇒
P n) ⇒
∀v. P v
- wf_encode_num
-
⊢ ∀p. wf_encoder p encode_num
- encode_bnum_def_compute
-
⊢ (∀n. encode_bnum 0 n = []) ∧
(∀m n.
encode_bnum (NUMERAL (BIT1 m)) n =
¬EVEN n::encode_bnum (NUMERAL (BIT1 m) − 1) (n DIV 2)) ∧
∀m n.
encode_bnum (NUMERAL (BIT2 m)) n =
¬EVEN n::encode_bnum (NUMERAL (BIT1 m)) (n DIV 2)
- wf_pred_bnum_total
-
⊢ ∀m. wf_pred_bnum m (λx. x < 2 ** m)
- wf_pred_bnum
-
⊢ ∀m p. wf_pred_bnum m p ⇒ collision_free m p
- encode_bnum_length
-
⊢ ∀m n. LENGTH (encode_bnum m n) = m
- encode_bnum_inj
-
⊢ ∀m x y. x < 2 ** m ∧ y < 2 ** m ∧ encode_bnum m x = encode_bnum m y ⇒ x = y
- wf_encode_bnum_collision_free
-
⊢ ∀m p. wf_encoder p (encode_bnum m) ⇔ collision_free m p
- wf_encode_bnum
-
⊢ ∀m p. wf_pred_bnum m p ⇒ wf_encoder p (encode_bnum m)
- datatype_tree
-
⊢ DATATYPE (tree Node)
- tree_11
-
⊢ ∀a0 a1 a0' a1'. Node a0 a1 = Node a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
- tree_nchotomy
-
⊢ ∀tt. ∃a l. tt = Node a l
- tree_Axiom
-
⊢ ∀f0 f1 f2.
∃fn0 fn1.
(∀a0 a1. fn0 (Node a0 a1) = f0 a0 a1 (fn1 a1)) ∧ fn1 [] = f1 ∧
∀a0 a1. fn1 (a0::a1) = f2 a0 a1 (fn0 a0) (fn1 a1)
- tree_induction
-
⊢ ∀P0 P1.
(∀l. P1 l ⇒ ∀a. P0 (Node a l)) ∧ P1 [] ∧ (∀t l. P0 t ∧ P1 l ⇒ P1 (t::l)) ⇒
(∀t. P0 t) ∧ ∀l. P1 l
- tree_case_cong
-
⊢ ∀M M' f.
M = M' ∧ (∀a0 a1. M' = Node a0 a1 ⇒ f a0 a1 = f' a0 a1) ⇒
tree_CASE M f = tree_CASE M' f'
- tree_case_eq
-
⊢ tree_CASE x f = v ⇔ ∃a l. x = Node a l ∧ f a l = v
- tree_ind
-
⊢ ∀p. (∀a ts. (∀t. MEM t ts ⇒ p t) ⇒ p (Node a ts)) ⇒ ∀t. p t
- encode_tree_def
-
⊢ encode_tree e (Node a ts) = e a ++ encode_list (encode_tree e) ts
- lift_tree_def
-
⊢ lift_tree p (Node a ts) ⇔ p a ∧ EVERY (lift_tree p) ts
- wf_encode_tree
-
⊢ ∀p e. wf_encoder p e ⇒ wf_encoder (lift_tree p) (encode_tree e)