- MAP2_ind
-
⊢ ∀P.
(∀pad f. P pad f [] []) ∧
(∀pad f y ys. P pad f [] ys ⇒ P pad f [] (y::ys)) ∧
(∀pad f x xs. P pad f xs [] ⇒ P pad f (x::xs) []) ∧
(∀pad f x xs y ys. P pad f xs ys ⇒ P pad f (x::xs) (y::ys)) ⇒
∀v v1 v2 v3. P v v1 v2 v3
- MAP2_def
-
⊢ (∀pad f. MAP2 pad f [] [] = []) ∧
(∀ys y pad f. MAP2 pad f [] (y::ys) = f pad y::MAP2 pad f [] ys) ∧
(∀xs x pad f. MAP2 pad f (x::xs) [] = f x pad::MAP2 pad f xs []) ∧
∀ys y xs x pad f. MAP2 pad f (x::xs) (y::ys) = f x y::MAP2 pad f xs ys
- MAP2_zero_ADD
-
⊢ ∀xs. MAP2 0 $+ [] xs = xs ∧ MAP2 0 $+ xs [] = xs
- sumc_ind
-
⊢ ∀P.
(∀v0. P v0 []) ∧ (∀v4 v5. P [] (v4::v5)) ∧
(∀c cs v vs. P cs vs ⇒ P (c::cs) (v::vs)) ⇒
∀v v1. P v v1
- sumc_def
-
⊢ (∀v0. sumc v0 [] = 0) ∧ (∀v5 v4. sumc [] (v4::v5) = 0) ∧
∀vs v cs c. sumc (c::cs) (v::vs) = c * v + sumc cs vs
- sumc_thm
-
⊢ ∀cs vs c v.
sumc [] vs = 0 ∧ sumc cs [] = 0 ∧
sumc (c::cs) (v::vs) = c * v + sumc cs vs
- sumc_ADD
-
⊢ ∀cs vs ds. sumc cs vs + sumc ds vs = sumc (MAP2 0 $+ cs ds) vs
- sumc_MULT
-
⊢ ∀cs vs f. f * sumc cs vs = sumc (MAP (λx. f * x) cs) vs
- sumc_singleton
-
⊢ ∀f c. sumc (MAP f [c]) [1] = f c
- sumc_nonsingle
-
⊢ ∀f cs c v vs. sumc (MAP f (c::cs)) (v::vs) = f c * v + sumc (MAP f cs) vs
- equality_removal
-
⊢ ∀c x cs vs.
0 < c ⇒
(0 = c * x + sumc cs vs ⇔
∃s.
x = -(c + 1) * s + sumc (MAP (λx. modhat x (c + 1)) cs) vs ∧
0 = c * x + sumc cs vs)
- evalupper_ind
-
⊢ ∀P. (∀x. P x []) ∧ (∀x c y cs. P x cs ⇒ P x ((c,y)::cs)) ⇒ ∀v v1. P v v1
- evalupper_def
-
⊢ (∀x. evalupper x [] ⇔ T) ∧
∀y x cs c. evalupper x ((c,y)::cs) ⇔ &c * x ≤ y ∧ evalupper x cs
- evallower_ind
-
⊢ ∀P. (∀x. P x []) ∧ (∀x c y cs. P x cs ⇒ P x ((c,y)::cs)) ⇒ ∀v v1. P v v1
- evallower_def
-
⊢ (∀x. evallower x [] ⇔ T) ∧
∀y x cs c. evallower x ((c,y)::cs) ⇔ y ≤ &c * x ∧ evallower x cs
- smaller_satisfies_uppers
-
⊢ ∀uppers x y. evalupper x uppers ∧ y < x ⇒ evalupper y uppers
- bigger_satisfies_lowers
-
⊢ ∀lowers x y. evallower x lowers ∧ x < y ⇒ evallower y lowers
- onlylowers_satisfiable
-
⊢ ∀lowers. EVERY fst_nzero lowers ⇒ ∃x. evallower x lowers
- onlyuppers_satisfiable
-
⊢ ∀uppers. EVERY fst_nzero uppers ⇒ ∃x. evalupper x uppers
- rshadow_row_ind
-
⊢ ∀P.
(∀upperc uppery. P (upperc,uppery) []) ∧
(∀upperc uppery lowerc lowery rs.
P (upperc,uppery) rs ⇒ P (upperc,uppery) ((lowerc,lowery)::rs)) ⇒
∀v v1 v2. P (v,v1) v2
- rshadow_row_def
-
⊢ (∀uppery upperc. rshadow_row (upperc,uppery) [] ⇔ T) ∧
∀uppery upperc rs lowery lowerc.
rshadow_row (upperc,uppery) ((lowerc,lowery)::rs) ⇔
&upperc * lowery ≤ &lowerc * uppery ∧ rshadow_row (upperc,uppery) rs
- singleton_real_shadow
-
⊢ ∀c L x.
&c * x ≤ L ∧ 0 < c ⇒
∀lowers.
EVERY fst_nzero lowers ∧ evallower x lowers ⇒
rshadow_row (c,L) lowers
- real_shadow_revimp_uppers1
-
⊢ ∀uppers lowers L x.
rshadow_row (1,L) lowers ∧ evallower x lowers ∧ evalupper x uppers ∧
EVERY fst_nzero lowers ∧ EVERY fst1 uppers ⇒
∃x. x ≤ L ∧ evalupper x uppers ∧ evallower x lowers
- real_shadow_revimp_lowers1
-
⊢ ∀uppers lowers c L x.
0 < c ∧ rshadow_row (c,L) lowers ∧ evalupper x uppers ∧
evallower x lowers ∧ EVERY fst_nzero uppers ∧ EVERY fst1 lowers ⇒
∃x. &c * x ≤ L ∧ evalupper x uppers ∧ evallower x lowers
- real_shadow_always_implied
-
⊢ ∀uppers lowers x.
evalupper x uppers ∧ evallower x lowers ∧ EVERY fst_nzero uppers ∧
EVERY fst_nzero lowers ⇒
real_shadow uppers lowers
- exact_shadow_case
-
⊢ ∀uppers lowers.
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ⇒
EVERY fst1 uppers ∨ EVERY fst1 lowers ⇒
((∃x. evalupper x uppers ∧ evallower x lowers) ⇔
real_shadow uppers lowers)
- dark_shadow_cond_row_ind
-
⊢ ∀P.
(∀c L. P (c,L) []) ∧ (∀c L d R t. P (c,L) t ⇒ P (c,L) ((d,R)::t)) ⇒
∀v v1 v2. P (v,v1) v2
- dark_shadow_cond_row_def
-
⊢ (∀c L. dark_shadow_cond_row (c,L) [] ⇔ T) ∧
∀t d c R L.
dark_shadow_cond_row (c,L) ((d,R)::t) ⇔
¬(∃i.
&c * &d * i < &c * R ∧ &c * R ≤ &d * L ∧ &d * L < &c * &d * (i + 1)) ∧
dark_shadow_cond_row (c,L) t
- dark_shadow_condition_ind
-
⊢ ∀P.
(∀lowers. P [] lowers) ∧
(∀c L uppers lowers. P uppers lowers ⇒ P ((c,L)::uppers) lowers) ⇒
∀v v1. P v v1
- dark_shadow_condition_def
-
⊢ (∀lowers. dark_shadow_condition [] lowers ⇔ T) ∧
∀uppers lowers c L.
dark_shadow_condition ((c,L)::uppers) lowers ⇔
dark_shadow_cond_row (c,L) lowers ∧ dark_shadow_condition uppers lowers
- basic_shadow_equivalence
-
⊢ ∀uppers lowers.
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ⇒
((∃x. evalupper x uppers ∧ evallower x lowers) ⇔
real_shadow uppers lowers ∧ dark_shadow_condition uppers lowers)
- dark_shadow_row_ind
-
⊢ ∀P.
(∀c L. P c L []) ∧ (∀c L d R rs. P c L rs ⇒ P c L ((d,R)::rs)) ⇒
∀v v1 v2. P v v1 v2
- dark_shadow_row_def
-
⊢ (∀c L. dark_shadow_row c L [] ⇔ T) ∧
∀rs d c R L.
dark_shadow_row c L ((d,R)::rs) ⇔
&d * L − &c * R ≥ (&c − 1) * (&d − 1) ∧ dark_shadow_row c L rs
- dark_shadow_ind
-
⊢ ∀P.
(∀lowers. P [] lowers) ∧
(∀c L uppers lowers. P uppers lowers ⇒ P ((c,L)::uppers) lowers) ⇒
∀v v1. P v v1
- dark_shadow_def
-
⊢ (∀lowers. dark_shadow [] lowers ⇔ T) ∧
∀uppers lowers c L.
dark_shadow ((c,L)::uppers) lowers ⇔
dark_shadow_row c L lowers ∧ dark_shadow uppers lowers
- nightmare_ind
-
⊢ ∀P.
(∀x c uppers lowers. P x c uppers lowers []) ∧
(∀x c uppers lowers d R rs.
P x c uppers lowers rs ⇒ P x c uppers lowers ((d,R)::rs)) ⇒
∀v v1 v2 v3 v4. P v v1 v2 v3 v4
- nightmare_def
-
⊢ (∀x uppers lowers c. nightmare x c uppers lowers [] ⇔ F) ∧
∀x uppers rs lowers d c R.
nightmare x c uppers lowers ((d,R)::rs) ⇔
(∃i.
(0 ≤ i ∧ i ≤ (&c * &d − &c − &d) / &c) ∧ &d * x = R + i ∧
evalupper x uppers ∧ evallower x lowers) ∨
nightmare x c uppers lowers rs
- nightmare_implies_LHS
-
⊢ ∀rs x uppers lowers c.
nightmare x c uppers lowers rs ⇒ evalupper x uppers ∧ evallower x lowers
- dark_shadow_FORALL
-
⊢ ∀uppers lowers.
dark_shadow uppers lowers ⇔
∀c d L R.
MEM (c,L) uppers ∧ MEM (d,R) lowers ⇒
&d * L − &c * R ≥ (&c − 1) * (&d − 1)
- real_shadow_FORALL
-
⊢ ∀uppers lowers.
real_shadow uppers lowers ⇔
∀c d L R. MEM (c,L) uppers ∧ MEM (d,R) lowers ⇒ &c * R ≤ &d * L
- evalupper_FORALL
-
⊢ ∀uppers x. evalupper x uppers ⇔ ∀c L. MEM (c,L) uppers ⇒ &c * x ≤ L
- evallower_FORALL
-
⊢ ∀lowers x. evallower x lowers ⇔ ∀d R. MEM (d,R) lowers ⇒ R ≤ &d * x
- nightmare_EXISTS
-
⊢ ∀rs x c uppers lowers.
nightmare x c uppers lowers rs ⇔
∃i d R.
0 ≤ i ∧ i ≤ (&d * &c − &c − &d) / &c ∧ MEM (d,R) rs ∧
evalupper x uppers ∧ evallower x lowers ∧ &d * x = R + i
- final_equivalence
-
⊢ ∀uppers lowers m.
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ∧
EVERY (λp. FST p ≤ m) uppers ⇒
((∃x. evalupper x uppers ∧ evallower x lowers) ⇔
real_shadow uppers lowers ∧
(dark_shadow uppers lowers ∨ ∃x. nightmare x m uppers lowers lowers))
- darkrow_implies_realrow
-
⊢ ∀lowers c L.
0 < c ∧ EVERY fst_nzero lowers ∧ dark_shadow_row c L lowers ⇒
rshadow_row (c,L) lowers
- dark_implies_real
-
⊢ ∀uppers lowers.
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ∧
dark_shadow uppers lowers ⇒
real_shadow uppers lowers
- alternative_equivalence
-
⊢ ∀uppers lowers m.
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ∧
EVERY (λp. FST p ≤ m) uppers ⇒
((∃x. evalupper x uppers ∧ evallower x lowers) ⇔
dark_shadow uppers lowers ∨ ∃x. nightmare x m uppers lowers lowers)
- eval_base
-
⊢ p ⇔ ((evalupper x [] ∧ evallower x []) ∧ T) ∧ p
- eval_step_upper1
-
⊢ ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ &c * x ≤ r ⇔
(evalupper x ((c,r)::ups) ∧ evallower x lows) ∧ ex
- eval_step_upper2
-
⊢ ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ &c * x ≤ r ∧ p ⇔
((evalupper x ((c,r)::ups) ∧ evallower x lows) ∧ ex) ∧ p
- eval_step_lower1
-
⊢ ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ r ≤ &c * x ⇔
(evalupper x ups ∧ evallower x ((c,r)::lows)) ∧ ex
- eval_step_lower2
-
⊢ ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ r ≤ &c * x ∧ p ⇔
((evalupper x ups ∧ evallower x ((c,r)::lows)) ∧ ex) ∧ p
- eval_step_extra1
-
⊢ ((evalupper x ups ∧ evallower x lows) ∧ T) ∧ ex' ⇔
(evalupper x ups ∧ evallower x lows) ∧ ex'
- eval_step_extra2
-
⊢ ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ ex' ⇔
(evalupper x ups ∧ evallower x lows) ∧ ex ∧ ex'
- eval_step_extra3
-
⊢ ((evalupper x ups ∧ evallower x lows) ∧ T) ∧ ex' ∧ p ⇔
((evalupper x ups ∧ evallower x lows) ∧ ex') ∧ p
- eval_step_extra4
-
⊢ ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ ex' ∧ p ⇔
((evalupper x ups ∧ evallower x lows) ∧ ex ∧ ex') ∧ p
- calc_nightmare_ind
-
⊢ ∀P.
(∀x c. P x c []) ∧ (∀x c d R rs. P x c rs ⇒ P x c ((d,R)::rs)) ⇒
∀v v1 v2. P v v1 v2
- calc_nightmare_def
-
⊢ (∀x c. calc_nightmare x c [] ⇔ F) ∧
∀x rs d c R.
calc_nightmare x c ((d,R)::rs) ⇔
(∃i. (0 ≤ i ∧ i ≤ (&c * &d − &c − &d) / &c) ∧ &d * x = R + i) ∨
calc_nightmare x c rs
- calculational_nightmare
-
⊢ ∀rs.
nightmare x c uppers lowers rs ⇔
calc_nightmare x c rs ∧ evalupper x uppers ∧ evallower x lowers