Theory "arithmetic"

Parents     prim_rec   pair

Signature

Constant Type
* :num -> num -> num
+ :num -> num -> num
- :num -> num -> num
<= :num reln
> :num reln
>= :num reln
ABS_DIFF :num -> num -> num
BIT1 :num -> num
BIT2 :num -> num
DIV :num -> num -> num
DIV2 :num -> num
DIVMOD :num # num # num -> num # num
EVEN :num -> bool
EXP :num -> num -> num
FACT :num -> num
FUNPOW :(α -> α) -> num -> α -> α
MAX :num -> num -> num
MIN :num -> num -> num
MOD :num -> num -> num
MODEQ :num -> num reln
NRC :α reln -> num -> α reln
NUMERAL :num -> num
ODD :num -> bool
ZERO :num
findq :num # num # num -> num
nat_elim__magic :num -> num
num_CASE :num -> α -> (num -> α) -> α

Definitions

ADD
⊢ (∀n. 0 + n = n) ∧ ∀m n. SUC m + n = SUC (m + n)
NUMERAL_DEF
⊢ ∀x. NUMERAL x = x
ALT_ZERO
⊢ ZERO = 0
BIT1
⊢ ∀n. BIT1 n = n + (n + SUC 0)
BIT2
⊢ ∀n. BIT2 n = n + (n + SUC (SUC 0))
nat_elim__magic
⊢ ∀n. &n = n
SUB
⊢ (∀m. 0 − m = 0) ∧ ∀m n. SUC m − n = if m < n then 0 else SUC (m − n)
MULT
⊢ (∀n. 0 * n = 0) ∧ ∀m n. SUC m * n = m * n + n
EXP
⊢ (∀m. m ** 0 = 1) ∧ ∀m n. m ** SUC n = m * m ** n
GREATER_DEF
⊢ ∀m n. m > n ⇔ n < m
LESS_OR_EQ
⊢ ∀m n. m ≤ n ⇔ m < n ∨ m = n
GREATER_OR_EQ
⊢ ∀m n. m ≥ n ⇔ m > n ∨ m = n
EVEN
⊢ (EVEN 0 ⇔ T) ∧ ∀n. EVEN (SUC n) ⇔ ¬EVEN n
ODD
⊢ (ODD 0 ⇔ F) ∧ ∀n. ODD (SUC n) ⇔ ¬ODD n
num_case_def
⊢ (∀v f. num_CASE 0 v f = v) ∧ ∀n v f. num_CASE (SUC n) v f = f n
FUNPOW
⊢ (∀f x. FUNPOW f 0 x = x) ∧ ∀f n x. FUNPOW f (SUC n) x = FUNPOW f n (f x)
NRC
⊢ (∀R x y. NRC R 0 x y ⇔ x = y) ∧
  ∀R n x y. NRC R (SUC n) x y ⇔ ∃z. R x z ∧ NRC R n z y
FACT
⊢ FACT 0 = 1 ∧ ∀n. FACT (SUC n) = SUC n * FACT n
DIVISION
⊢ ∀n. 0 < n ⇒ ∀k. k = k DIV n * n + k MOD n ∧ k MOD n < n
DIV2_def
⊢ ∀n. DIV2 n = n DIV 2
MAX_DEF
⊢ ∀m n. MAX m n = if m < n then n else m
MIN_DEF
⊢ ∀m n. MIN m n = if m < n then m else n
ABS_DIFF_def
⊢ ∀n m. ABS_DIFF n m = if n < m then m − n else n − m
findq_def
⊢ findq =
  WFREC (measure (λ(a,m,n). m − n))
    (λf (a,m,n).
         if n = 0 then a
         else (let d = 2 * n in if m < d then a else f (2 * a,m,d)))
DIVMOD_DEF
⊢ DIVMOD =
  WFREC (measure (FST ∘ SND))
    (λf (a,m,n).
         if n = 0 then (0,0)
         else if m < n then (a,m)
         else (let q = findq (1,m,n) in f (a + q,m − n * q,n)))
MODEQ_DEF
⊢ ∀n m1 m2. MODEQ n m1 m2 ⇔ ∃a b. a * n + m1 = b * n + m2


Theorems

ONE
⊢ 1 = SUC 0
TWO
⊢ 2 = SUC 1
NORM_0
⊢ 0 = 0
num_case_compute
⊢ ∀n. num_CASE n f g = if n = 0 then f else g (PRE n)
SUC_NOT
⊢ ∀n. 0 ≠ SUC n
ADD_0
⊢ ∀m. m + 0 = m
ADD_SUC
⊢ ∀m n. SUC (m + n) = m + SUC n
ADD_CLAUSES
⊢ 0 + m = m ∧ m + 0 = m ∧ SUC m + n = SUC (m + n) ∧ m + SUC n = SUC (m + n)
ADD_SYM
⊢ ∀m n. m + n = n + m
ADD_COMM
⊢ ∀m n. m + n = n + m
ADD_ASSOC
⊢ ∀m n p. m + (n + p) = m + n + p
num_CASES
⊢ ∀m. m = 0 ∨ ∃n. m = SUC n
NOT_ZERO_LT_ZERO
⊢ ∀n. n ≠ 0 ⇔ 0 < n
NOT_LT_ZERO_EQ_ZERO
⊢ ∀n. ¬(0 < n) ⇔ n = 0
LESS_OR_EQ_ALT
⊢ $<= = (λx y. y = SUC x)^*
LESS_ADD
⊢ ∀m n. n < m ⇒ ∃p. p + n = m
transitive_LESS
⊢ transitive $<
LESS_TRANS
⊢ ∀m n p. m < n ∧ n < p ⇒ m < p
LESS_ANTISYM
⊢ ∀m n. ¬(m < n ∧ n < m)
LESS_MONO_REV
⊢ ∀m n. SUC m < SUC n ⇒ m < n
LESS_MONO_EQ
⊢ ∀m n. SUC m < SUC n ⇔ m < n
LESS_EQ_MONO
⊢ ∀n m. SUC n ≤ SUC m ⇔ n ≤ m
LESS_LESS_SUC
⊢ ∀m n. ¬(m < n ∧ n < SUC m)
transitive_measure
⊢ ∀f. transitive (measure f)
LESS_EQ
⊢ ∀m n. m < n ⇔ SUC m ≤ n
LESS_OR
⊢ ∀m n. m < n ⇒ SUC m ≤ n
OR_LESS
⊢ ∀m n. SUC m ≤ n ⇒ m < n
LESS_EQ_IFF_LESS_SUC
⊢ ∀n m. n ≤ m ⇔ n < SUC m
LESS_EQ_IMP_LESS_SUC
⊢ ∀n m. n ≤ m ⇒ n < SUC m
ZERO_LESS_EQ
⊢ ∀n. 0 ≤ n
LESS_SUC_EQ_COR
⊢ ∀m n. m < n ∧ SUC m ≠ n ⇒ SUC m < n
LESS_NOT_SUC
⊢ ∀m n. m < n ∧ n ≠ SUC m ⇒ SUC m < n
LESS_0_CASES
⊢ ∀m. 0 = m ∨ 0 < m
LESS_CASES_IMP
⊢ ∀m n. ¬(m < n) ∧ m ≠ n ⇒ n < m
LESS_CASES
⊢ ∀m n. m < n ∨ n ≤ m
ADD_INV_0
⊢ ∀m n. m + n = m ⇒ n = 0
LESS_EQ_ADD
⊢ ∀m n. m ≤ m + n
LESS_EQ_ADD_EXISTS
⊢ ∀m n. n ≤ m ⇒ ∃p. p + n = m
LESS_STRONG_ADD
⊢ ∀m n. n < m ⇒ ∃p. SUC p + n = m
LESS_EQ_SUC_REFL
⊢ ∀m. m ≤ SUC m
LESS_ADD_NONZERO
⊢ ∀m n. n ≠ 0 ⇒ m < m + n
NOT_SUC_LESS_EQ_0
⊢ ∀n. ¬(SUC n ≤ 0)
NOT_LESS
⊢ ∀m n. ¬(m < n) ⇔ n ≤ m
NOT_LESS_EQUAL
⊢ ∀m n. ¬(m ≤ n) ⇔ n < m
LESS_EQ_ANTISYM
⊢ ∀m n. ¬(m < n ∧ n ≤ m)
LESS_EQ_0
⊢ ∀n. n ≤ 0 ⇔ n = 0
SUB_0
⊢ ∀m. 0 − m = 0 ∧ m − 0 = m
SUB_MONO_EQ
⊢ ∀n m. SUC n − SUC m = n − m
SUB_EQ_0
⊢ ∀m n. m − n = 0 ⇔ m ≤ n
ADD1
⊢ ∀m. SUC m = m + 1
SUC_SUB1
⊢ ∀m. SUC m − 1 = m
PRE_SUB1
⊢ ∀m. PRE m = m − 1
MULT_0
⊢ ∀m. m * 0 = 0
MULT_SUC
⊢ ∀m n. m * SUC n = m + m * n
MULT_LEFT_1
⊢ ∀m. 1 * m = m
MULT_RIGHT_1
⊢ ∀m. m * 1 = m
MULT_CLAUSES
⊢ ∀m n.
      0 * m = 0 ∧ m * 0 = 0 ∧ 1 * m = m ∧ m * 1 = m ∧ SUC m * n = m * n + n ∧
      m * SUC n = m + m * n
MULT_SYM
⊢ ∀m n. m * n = n * m
MULT_COMM
⊢ ∀m n. m * n = n * m
RIGHT_ADD_DISTRIB
⊢ ∀m n p. (m + n) * p = m * p + n * p
LEFT_ADD_DISTRIB
⊢ ∀m n p. p * (m + n) = p * m + p * n
MULT_ASSOC
⊢ ∀m n p. m * (n * p) = m * n * p
SUB_ADD
⊢ ∀m n. n ≤ m ⇒ m − n + n = m
PRE_SUB
⊢ ∀m n. PRE (m − n) = PRE m − n
ADD_EQ_0
⊢ ∀m n. m + n = 0 ⇔ m = 0 ∧ n = 0
ADD_EQ_1
⊢ ∀m n. m + n = 1 ⇔ m = 1 ∧ n = 0 ∨ m = 0 ∧ n = 1
ADD_INV_0_EQ
⊢ ∀m n. m + n = m ⇔ n = 0
PRE_SUC_EQ
⊢ ∀m n. 0 < n ⇒ (m = PRE n ⇔ SUC m = n)
INV_PRE_EQ
⊢ ∀m n. 0 < m ∧ 0 < n ⇒ (PRE m = PRE n ⇔ m = n)
LESS_SUC_NOT
⊢ ∀m n. m < n ⇒ ¬(n < SUC m)
ADD_EQ_SUB
⊢ ∀m n p. n ≤ p ⇒ (m + n = p ⇔ m = p − n)
LESS_MONO_ADD
⊢ ∀m n p. m < n ⇒ m + p < n + p
LESS_MONO_ADD_INV
⊢ ∀m n p. m + p < n + p ⇒ m < n
LESS_MONO_ADD_EQ
⊢ ∀m n p. m + p < n + p ⇔ m < n
LT_ADD_RCANCEL
⊢ ∀m n p. m + p < n + p ⇔ m < n
LT_ADD_LCANCEL
⊢ ∀m n p. p + m < p + n ⇔ m < n
EQ_MONO_ADD_EQ
⊢ ∀m n p. m + p = n + p ⇔ m = n
LESS_EQ_MONO_ADD_EQ
⊢ ∀m n p. m + p ≤ n + p ⇔ m ≤ n
LESS_EQ_TRANS
⊢ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
LESS_EQ_LESS_TRANS
⊢ ∀m n p. m ≤ n ∧ n < p ⇒ m < p
LESS_LESS_EQ_TRANS
⊢ ∀m n p. m < n ∧ n ≤ p ⇒ m < p
LESS_EQ_LESS_EQ_MONO
⊢ ∀m n p q. m ≤ p ∧ n ≤ q ⇒ m + n ≤ p + q
LESS_EQ_REFL
⊢ ∀m. m ≤ m
LESS_IMP_LESS_OR_EQ
⊢ ∀m n. m < n ⇒ m ≤ n
LESS_MONO_MULT
⊢ ∀m n p. m ≤ n ⇒ m * p ≤ n * p
LESS_MONO_MULT2
⊢ ∀m n i j. m ≤ i ∧ n ≤ j ⇒ m * n ≤ i * j
RIGHT_SUB_DISTRIB
⊢ ∀m n p. (m − n) * p = m * p − n * p
LEFT_SUB_DISTRIB
⊢ ∀m n p. p * (m − n) = p * m − p * n
LESS_ADD_1
⊢ ∀m n. n < m ⇒ ∃p. m = n + (p + 1)
EXP_ADD
⊢ ∀p q n. n ** (p + q) = n ** p * n ** q
NOT_ODD_EQ_EVEN
⊢ ∀n m. SUC (n + n) ≠ m + m
LESS_EQUAL_ANTISYM
⊢ ∀n m. n ≤ m ∧ m ≤ n ⇒ n = m
LESS_ADD_SUC
⊢ ∀m n. m < m + SUC n
LESS_OR_EQ_ADD
⊢ ∀n m. n < m ∨ ∃p. n = p + m
WOP
⊢ ∀P. (∃n. P n) ⇒ ∃n. P n ∧ ∀m. m < n ⇒ ¬P m
COMPLETE_INDUCTION
⊢ ∀P. (∀n. (∀m. m < n ⇒ P m) ⇒ P n) ⇒ ∀n. P n
FORALL_NUM_THM
⊢ (∀n. P n) ⇔ P 0 ∧ ∀n. P n ⇒ P (SUC n)
SUC_SUB
⊢ ∀a. SUC a − a = 1
SUB_PLUS
⊢ ∀a b c. a − (b + c) = a − b − c
INV_PRE_LESS
⊢ ∀m. 0 < m ⇒ ∀n. PRE m < PRE n ⇔ m < n
INV_PRE_LESS_EQ
⊢ ∀n. 0 < n ⇒ ∀m. PRE m ≤ PRE n ⇔ m ≤ n
PRE_LESS_EQ
⊢ ∀n. m ≤ n ⇒ PRE m ≤ PRE n
SUB_LESS_EQ
⊢ ∀n m. n − m ≤ n
SUB_EQ_EQ_0
⊢ ∀m n. m − n = m ⇔ m = 0 ∨ n = 0
SUB_LESS_0
⊢ ∀n m. m < n ⇔ 0 < n − m
SUB_LESS_OR
⊢ ∀m n. n < m ⇒ n ≤ m − 1
LESS_SUB_ADD_LESS
⊢ ∀n m i. i < n − m ⇒ i + m < n
TIMES2
⊢ ∀n. 2 * n = n + n
LESS_MULT_MONO
⊢ ∀m i n. SUC n * m < SUC n * i ⇔ m < i
MULT_MONO_EQ
⊢ ∀m i n. SUC n * m = SUC n * i ⇔ m = i
MULT_SUC_EQ
⊢ ∀p m n. n * SUC p = m * SUC p ⇔ n = m
MULT_EXP_MONO
⊢ ∀p q n m. n * SUC q ** p = m * SUC q ** p ⇔ n = m
EQ_ADD_LCANCEL
⊢ ∀m n p. m + n = m + p ⇔ n = p
EQ_ADD_RCANCEL
⊢ ∀m n p. m + p = n + p ⇔ m = n
EQ_MULT_LCANCEL
⊢ ∀m n p. m * n = m * p ⇔ m = 0 ∨ n = p
EQ_MULT_RCANCEL
⊢ ∀m n p. n * m = p * m ⇔ m = 0 ∨ n = p
ADD_SUB
⊢ ∀a c. a + c − c = a
LESS_EQ_ADD_SUB
⊢ ∀c b. c ≤ b ⇒ ∀a. a + b − c = a + (b − c)
SUB_EQUAL_0
⊢ ∀c. c − c = 0
LESS_EQ_SUB_LESS
⊢ ∀a b. b ≤ a ⇒ ∀c. a − b < c ⇔ a < b + c
NOT_SUC_LESS_EQ
⊢ ∀n m. ¬(SUC n ≤ m) ⇔ m ≤ n
SUB_SUB
⊢ ∀b c. c ≤ b ⇒ ∀a. a − (b − c) = a + c − b
LESS_IMP_LESS_ADD
⊢ ∀n m. n < m ⇒ ∀p. n < m + p
SUB_LESS_EQ_ADD
⊢ ∀m p. m ≤ p ⇒ ∀n. p − m ≤ n ⇔ p ≤ m + n
SUB_LESS_SUC
⊢ ∀p m. p − m < SUC p
SUB_CANCEL
⊢ ∀p n m. n ≤ p ∧ m ≤ p ⇒ (p − n = p − m ⇔ n = m)
CANCEL_SUB
⊢ ∀p n m. p ≤ n ∧ p ≤ m ⇒ (n − p = m − p ⇔ n = m)
NOT_EXP_0
⊢ ∀m n. SUC n ** m ≠ 0
ZERO_LESS_EXP
⊢ ∀m n. 0 < SUC n ** m
ODD_OR_EVEN
⊢ ∀n. ∃m. n = SUC (SUC 0) * m ∨ n = SUC (SUC 0) * m + 1
LESS_EXP_SUC_MONO
⊢ ∀n m. SUC (SUC m) ** n < SUC (SUC m) ** SUC n
LESS_LESS_CASES
⊢ ∀m n. m = n ∨ m < n ∨ n < m
GREATER_EQ
⊢ ∀n m. n ≥ m ⇔ m ≤ n
LESS_EQ_CASES
⊢ ∀m n. m ≤ n ∨ n ≤ m
LESS_EQUAL_ADD
⊢ ∀m n. m ≤ n ⇒ ∃p. n = m + p
LESS_EQ_EXISTS
⊢ ∀m n. m ≤ n ⇔ ∃p. n = m + p
MULT_EQ_0
⊢ ∀m n. m * n = 0 ⇔ m = 0 ∨ n = 0
MULT_EQ_1
⊢ ∀x y. x * y = 1 ⇔ x = 1 ∧ y = 1
MULT_EQ_ID
⊢ ∀m n. m * n = n ⇔ m = 1 ∨ n = 0
LESS_MULT2
⊢ ∀m n. 0 < m ∧ 0 < n ⇒ 0 < m * n
ZERO_LESS_MULT
⊢ ∀m n. 0 < m * n ⇔ 0 < m ∧ 0 < n
ZERO_LESS_ADD
⊢ ∀m n. 0 < m + n ⇔ 0 < m ∨ 0 < n
FACT_LESS
⊢ ∀n. 0 < FACT n
EVEN_ODD
⊢ ∀n. EVEN n ⇔ ¬ODD n
ODD_EVEN
⊢ ∀n. ODD n ⇔ ¬EVEN n
EVEN_OR_ODD
⊢ ∀n. EVEN n ∨ ODD n
EVEN_AND_ODD
⊢ ∀n. ¬(EVEN n ∧ ODD n)
EVEN_ADD
⊢ ∀m n. EVEN (m + n) ⇔ (EVEN m ⇔ EVEN n)
EVEN_MULT
⊢ ∀m n. EVEN (m * n) ⇔ EVEN m ∨ EVEN n
ODD_ADD
⊢ ∀m n. ODD (m + n) ⇔ (ODD m ⇎ ODD n)
ODD_MULT
⊢ ∀m n. ODD (m * n) ⇔ ODD m ∧ ODD n
EVEN_DOUBLE
⊢ ∀n. EVEN (2 * n)
ODD_DOUBLE
⊢ ∀n. ODD (SUC (2 * n))
EVEN_ODD_EXISTS
⊢ ∀n. (EVEN n ⇒ ∃m. n = 2 * m) ∧ (ODD n ⇒ ∃m. n = SUC (2 * m))
EVEN_EXISTS
⊢ ∀n. EVEN n ⇔ ∃m. n = 2 * m
ODD_EXISTS
⊢ ∀n. ODD n ⇔ ∃m. n = SUC (2 * m)
EVEN_EXP_IFF
⊢ ∀n m. EVEN (m ** n) ⇔ 0 < n ∧ EVEN m
EVEN_EXP
⊢ ∀m n. 0 < n ∧ EVEN m ⇒ EVEN (m ** n)
ODD_EXP_IFF
⊢ ∀n m. ODD (m ** n) ⇔ n = 0 ∨ ODD m
ODD_EXP
⊢ ∀m n. 0 < n ∧ ODD m ⇒ ODD (m ** n)
EQ_LESS_EQ
⊢ ∀m n. m = n ⇔ m ≤ n ∧ n ≤ m
ADD_MONO_LESS_EQ
⊢ ∀m n p. m + n ≤ m + p ⇔ n ≤ p
LE_ADD_LCANCEL
⊢ ∀m n p. m + n ≤ m + p ⇔ n ≤ p
LE_ADD_RCANCEL
⊢ ∀m n p. n + m ≤ p + m ⇔ n ≤ p
NOT_LEQ
⊢ ∀m n. ¬(m ≤ n) ⇔ SUC n ≤ m
NOT_NUM_EQ
⊢ ∀m n. m ≠ n ⇔ SUC m ≤ n ∨ SUC n ≤ m
NOT_GREATER
⊢ ∀m n. ¬(m > n) ⇔ m ≤ n
NOT_GREATER_EQ
⊢ ∀m n. ¬(m ≥ n) ⇔ SUC m ≤ n
SUC_ONE_ADD
⊢ ∀n. SUC n = 1 + n
SUC_ADD_SYM
⊢ ∀m n. SUC (m + n) = SUC n + m
NOT_SUC_ADD_LESS_EQ
⊢ ∀m n. ¬(SUC (m + n) ≤ m)
MULT_LESS_EQ_SUC
⊢ ∀m n p. m ≤ n ⇔ SUC p * m ≤ SUC p * n
LE_MULT_LCANCEL
⊢ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
LE_MULT_RCANCEL
⊢ ∀m n p. m * n ≤ p * n ⇔ n = 0 ∨ m ≤ p
LT_MULT_LCANCEL
⊢ ∀m n p. m * n < m * p ⇔ 0 < m ∧ n < p
LT_MULT_RCANCEL
⊢ ∀m n p. m * n < p * n ⇔ 0 < n ∧ m < p
LT_MULT_CANCEL_LBARE
⊢ (m < m * n ⇔ 0 < m ∧ 1 < n) ∧ (m < n * m ⇔ 0 < m ∧ 1 < n)
LT_MULT_CANCEL_RBARE
⊢ (m * n < m ⇔ 0 < m ∧ n = 0) ∧ (m * n < n ⇔ 0 < n ∧ m = 0)
LE_MULT_CANCEL_LBARE
⊢ (m ≤ m * n ⇔ m = 0 ∨ 0 < n) ∧ (m ≤ n * m ⇔ m = 0 ∨ 0 < n)
LE_MULT_CANCEL_RBARE
⊢ (m * n ≤ m ⇔ m = 0 ∨ n ≤ 1) ∧ (m * n ≤ n ⇔ n = 0 ∨ m ≤ 1)
SUB_LEFT_ADD
⊢ ∀m n p. m + (n − p) = if n ≤ p then m else m + n − p
SUB_RIGHT_ADD
⊢ ∀m n p. m − n + p = if m ≤ n then p else m + p − n
SUB_LEFT_SUB
⊢ ∀m n p. m − (n − p) = if n ≤ p then m else m + p − n
SUB_RIGHT_SUB
⊢ ∀m n p. m − n − p = m − (n + p)
SUB_LEFT_SUC
⊢ ∀m n. SUC (m − n) = if m ≤ n then SUC 0 else SUC m − n
SUB_LEFT_LESS_EQ
⊢ ∀m n p. m ≤ n − p ⇔ m + p ≤ n ∨ m ≤ 0
SUB_RIGHT_LESS_EQ
⊢ ∀m n p. m − n ≤ p ⇔ m ≤ n + p
SUB_LEFT_LESS
⊢ ∀m n p. m < n − p ⇔ m + p < n
SUB_RIGHT_LESS
⊢ ∀m n p. m − n < p ⇔ m < n + p ∧ 0 < p
SUB_LEFT_GREATER_EQ
⊢ ∀m n p. m ≥ n − p ⇔ m + p ≥ n
SUB_RIGHT_GREATER_EQ
⊢ ∀m n p. m − n ≥ p ⇔ m ≥ n + p ∨ 0 ≥ p
SUB_LEFT_GREATER
⊢ ∀m n p. m > n − p ⇔ m + p > n ∧ m > 0
SUB_RIGHT_GREATER
⊢ ∀m n p. m − n > p ⇔ m > n + p
SUB_LEFT_EQ
⊢ ∀m n p. m = n − p ⇔ m + p = n ∨ m ≤ 0 ∧ n ≤ p
SUB_RIGHT_EQ
⊢ ∀m n p. m − n = p ⇔ m = n + p ∨ m ≤ n ∧ p ≤ 0
LE
⊢ (∀n. n ≤ 0 ⇔ n = 0) ∧ ∀m n. m ≤ SUC n ⇔ m = SUC n ∨ m ≤ n
DA
⊢ ∀k n. 0 < n ⇒ ∃r q. k = q * n + r ∧ r < n
MOD_ONE
⊢ ∀k. k MOD SUC 0 = 0
MOD_1
⊢ ∀k. k MOD 1 = 0
DIV_LESS_EQ
⊢ ∀n. 0 < n ⇒ ∀k. k DIV n ≤ k
DIV_UNIQUE
⊢ ∀n k q. (∃r. k = q * n + r ∧ r < n) ⇒ k DIV n = q
MOD_UNIQUE
⊢ ∀n k r. (∃q. k = q * n + r ∧ r < n) ⇒ k MOD n = r
DIV_MULT
⊢ ∀n r. r < n ⇒ ∀q. (q * n + r) DIV n = q
LESS_MOD
⊢ ∀n k. k < n ⇒ k MOD n = k
MOD_EQ_0
⊢ ∀n. 0 < n ⇒ ∀k. (k * n) MOD n = 0
ZERO_MOD
⊢ ∀n. 0 < n ⇒ 0 MOD n = 0
ZERO_DIV
⊢ ∀n. 0 < n ⇒ 0 DIV n = 0
MOD_MULT
⊢ ∀n r. r < n ⇒ ∀q. (q * n + r) MOD n = r
MOD_TIMES
⊢ ∀n. 0 < n ⇒ ∀q r. (q * n + r) MOD n = r MOD n
MOD_TIMES_SUB
⊢ ∀n q r. 0 < n ∧ 0 < q ∧ r ≤ n ⇒ (q * n − r) MOD n = (n − r) MOD n
MOD_PLUS
⊢ ∀n. 0 < n ⇒ ∀j k. (j MOD n + k MOD n) MOD n = (j + k) MOD n
MOD_MOD
⊢ ∀n. 0 < n ⇒ ∀k. k MOD n MOD n = k MOD n
LESS_DIV_EQ_ZERO
⊢ ∀r n. r < n ⇒ r DIV n = 0
MULT_DIV
⊢ ∀n q. 0 < n ⇒ q * n DIV n = q
ADD_DIV_ADD_DIV
⊢ ∀n. 0 < n ⇒ ∀x r. (x * n + r) DIV n = x + r DIV n
ADD_DIV_RWT
⊢ ∀n.
      0 < n ⇒
      ∀m p. m MOD n = 0 ∨ p MOD n = 0 ⇒ (m + p) DIV n = m DIV n + p DIV n
MOD_MULT_MOD
⊢ ∀m n. 0 < n ∧ 0 < m ⇒ ∀x. x MOD (n * m) MOD n = x MOD n
DIV_ONE
⊢ ∀q. q DIV SUC 0 = q
DIV_1
⊢ ∀q. q DIV 1 = q
DIVMOD_ID
⊢ ∀n. 0 < n ⇒ n DIV n = 1 ∧ n MOD n = 0
DIV_DIV_DIV_MULT
⊢ ∀m n. 0 < m ∧ 0 < n ⇒ ∀x. x DIV m DIV n = x DIV (m * n)
SUC_PRE
⊢ 0 < m ⇔ SUC (PRE m) = m
DIV_LESS
⊢ ∀n d. 0 < n ∧ 1 < d ⇒ n DIV d < n
MOD_LESS
⊢ ∀m n. 0 < n ⇒ m MOD n < n
ADD_MODULUS
⊢ (∀n x. 0 < n ⇒ (x + n) MOD n = x MOD n) ∧
  ∀n x. 0 < n ⇒ (n + x) MOD n = x MOD n
ADD_MODULUS_LEFT
⊢ ∀n x. 0 < n ⇒ (x + n) MOD n = x MOD n
ADD_MODULUS_RIGHT
⊢ ∀n x. 0 < n ⇒ (n + x) MOD n = x MOD n
DIV_P
⊢ ∀P p q. 0 < q ⇒ (P (p DIV q) ⇔ ∃k r. p = k * q + r ∧ r < q ∧ P k)
DIV_P_UNIV
⊢ ∀P m n. 0 < n ⇒ (P (m DIV n) ⇔ ∀q r. m = q * n + r ∧ r < n ⇒ P q)
MOD_P
⊢ ∀P p q. 0 < q ⇒ (P (p MOD q) ⇔ ∃k r. p = k * q + r ∧ r < q ∧ P r)
MOD_P_UNIV
⊢ ∀P m n. 0 < n ⇒ (P (m MOD n) ⇔ ∀q r. m = q * n + r ∧ r < n ⇒ P r)
MOD_TIMES2
⊢ ∀n. 0 < n ⇒ ∀j k. (j MOD n * k MOD n) MOD n = (j * k) MOD n
MOD_COMMON_FACTOR
⊢ ∀n p q. 0 < n ∧ 0 < q ⇒ n * p MOD q = (n * p) MOD (n * q)
X_MOD_Y_EQ_X
⊢ ∀x y. 0 < y ⇒ (x MOD y = x ⇔ x < y)
DIV_LE_MONOTONE
⊢ ∀n x y. 0 < n ∧ x ≤ y ⇒ x DIV n ≤ y DIV n
LE_LT1
⊢ ∀x y. x ≤ y ⇔ x < y + 1
X_LE_DIV
⊢ ∀x y z. 0 < z ⇒ (x ≤ y DIV z ⇔ x * z ≤ y)
X_LT_DIV
⊢ ∀x y z. 0 < z ⇒ (x < y DIV z ⇔ (x + 1) * z ≤ y)
DIV_LT_X
⊢ ∀x y z. 0 < z ⇒ (y DIV z < x ⇔ y < x * z)
DIV_LE_X
⊢ ∀x y z. 0 < z ⇒ (y DIV z ≤ x ⇔ y < (x + 1) * z)
DIV_EQ_X
⊢ ∀x y z. 0 < z ⇒ (y DIV z = x ⇔ x * z ≤ y ∧ y < SUC x * z)
DIV_MOD_MOD_DIV
⊢ ∀m n k. 0 < n ∧ 0 < k ⇒ (m DIV n) MOD k = m MOD (n * k) DIV n
MULT_EQ_DIV
⊢ 0 < x ⇒ (x * y = z ⇔ y = z DIV x ∧ z MOD x = 0)
NUMERAL_MULT_EQ_DIV
⊢ (NUMERAL (BIT1 x) * y = NUMERAL z ⇔
   y = NUMERAL z DIV NUMERAL (BIT1 x) ∧ NUMERAL z MOD NUMERAL (BIT1 x) = 0) ∧
  (NUMERAL (BIT2 x) * y = NUMERAL z ⇔
   y = NUMERAL z DIV NUMERAL (BIT2 x) ∧ NUMERAL z MOD NUMERAL (BIT2 x) = 0)
MOD_EQ_0_DIVISOR
⊢ 0 < n ⇒ (k MOD n = 0 ⇔ ∃d. k = d * n)
MOD_SUC
⊢ 0 < y ∧ SUC x ≠ SUC (x DIV y) * y ⇒ SUC x MOD y = SUC (x MOD y)
MOD_SUC_IFF
⊢ 0 < y ⇒ (SUC x MOD y = SUC (x MOD y) ⇔ SUC x ≠ SUC (x DIV y) * y)
ONE_MOD
⊢ 1 < n ⇒ 1 MOD n = 1
ONE_MOD_IFF
⊢ 1 < n ⇔ 0 < n ∧ 1 MOD n = 1
MOD_LESS_EQ
⊢ 0 < y ⇒ x MOD y ≤ x
MOD_LIFT_PLUS
⊢ 0 < n ∧ k < n − x MOD n ⇒ (x + k) MOD n = x MOD n + k
MOD_LIFT_PLUS_IFF
⊢ 0 < n ⇒ ((x + k) MOD n = x MOD n + k ⇔ k < n − x MOD n)
num_case_cong
⊢ ∀M M' v f.
      M = M' ∧ (M' = 0 ⇒ v = v') ∧ (∀n. M' = SUC n ⇒ f n = f' n) ⇒
      num_CASE M v f = num_CASE M' v' f'
SUC_ELIM_THM
⊢ ∀P. (∀n. P (SUC n) n) ⇔ ∀n. 0 < n ⇒ P n (n − 1)
SUC_ELIM_NUMERALS
⊢ ∀f g.
      (∀n. g (SUC n) = f n (SUC n)) ⇔
      (∀n. g (NUMERAL (BIT1 n)) = f (NUMERAL (BIT1 n) − 1) (NUMERAL (BIT1 n))) ∧
      ∀n. g (NUMERAL (BIT2 n)) = f (NUMERAL (BIT1 n)) (NUMERAL (BIT2 n))
SUB_ELIM_THM
⊢ P (a − b) ⇔ ∀d. (b = a + d ⇒ P 0) ∧ (a = b + d ⇒ P d)
PRE_ELIM_THM
⊢ P (PRE n) ⇔ ∀m. (n = 0 ⇒ P 0) ∧ (n = SUC m ⇒ P m)
MULT_INCREASES
⊢ ∀m n. 1 < m ∧ 0 < n ⇒ SUC n ≤ m * n
EXP_ALWAYS_BIG_ENOUGH
⊢ ∀b. 1 < b ⇒ ∀n. ∃m. n ≤ b ** m
EXP_EQ_0
⊢ ∀n m. n ** m = 0 ⇔ n = 0 ∧ 0 < m
ZERO_LT_EXP
⊢ 0 < x ** y ⇔ 0 < x ∨ y = 0
EXP_1
⊢ ∀n. 1 ** n = 1 ∧ n ** 1 = n
EXP_EQ_1
⊢ ∀n m. n ** m = 1 ⇔ n = 1 ∨ m = 0
EXP_BASE_LE_MONO
⊢ ∀b. 1 < b ⇒ ∀n m. b ** m ≤ b ** n ⇔ m ≤ n
EXP_BASE_LT_MONO
⊢ ∀b. 1 < b ⇒ ∀n m. b ** m < b ** n ⇔ m < n
EXP_BASE_INJECTIVE
⊢ ∀b. 1 < b ⇒ ∀n m. b ** n = b ** m ⇔ n = m
EXP_BASE_LEQ_MONO_IMP
⊢ ∀n m b. 0 < b ∧ m ≤ n ⇒ b ** m ≤ b ** n
EXP_BASE_LEQ_MONO_SUC_IMP
⊢ m ≤ n ⇒ SUC b ** m ≤ SUC b ** n
EXP_BASE_LE_IFF
⊢ b ** m ≤ b ** n ⇔ b = 0 ∧ n = 0 ∨ b = 0 ∧ 0 < m ∨ b = 1 ∨ 1 < b ∧ m ≤ n
X_LE_X_EXP
⊢ 0 < n ⇒ x ≤ x ** n
X_LT_EXP_X
⊢ 1 < b ⇒ x < b ** x
ZERO_EXP
⊢ 0 ** x = if x = 0 then 1 else 0
X_LT_EXP_X_IFF
⊢ x < b ** x ⇔ 1 < b ∨ x = 0
EXP_EXP_LT_MONO
⊢ ∀a b. a ** n < b ** n ⇔ a < b ∧ 0 < n
EXP_EXP_LE_MONO
⊢ ∀a b. a ** n ≤ b ** n ⇔ a ≤ b ∨ n = 0
EXP_EXP_INJECTIVE
⊢ ∀b1 b2 x. b1 ** x = b2 ** x ⇔ x = 0 ∨ b1 = b2
EXP_SUB
⊢ ∀p q n. 0 < n ∧ q ≤ p ⇒ n ** (p − q) = n ** p DIV n ** q
EXP_SUB_NUMERAL
⊢ 0 < n ⇒
  n ** NUMERAL (BIT1 x) DIV n = n ** (NUMERAL (BIT1 x) − 1) ∧
  n ** NUMERAL (BIT2 x) DIV n = n ** NUMERAL (BIT1 x)
EXP_BASE_MULT
⊢ ∀z x y. (x * y) ** z = x ** z * y ** z
EXP_EXP_MULT
⊢ ∀z x y. x ** (y * z) = (x ** y) ** z
MAX_COMM
⊢ ∀m n. MAX m n = MAX n m
MIN_COMM
⊢ ∀m n. MIN m n = MIN n m
MAX_ASSOC
⊢ ∀m n p. MAX m (MAX n p) = MAX (MAX m n) p
MIN_ASSOC
⊢ ∀m n p. MIN m (MIN n p) = MIN (MIN m n) p
MIN_MAX_EQ
⊢ ∀m n. MIN m n = MAX m n ⇔ m = n
MIN_MAX_LT
⊢ ∀m n. MIN m n < MAX m n ⇔ m ≠ n
MIN_MAX_LE
⊢ ∀m n. MIN m n ≤ MAX m n
MIN_MAX_PRED
⊢ ∀P m n. P m ∧ P n ⇒ P (MIN m n) ∧ P (MAX m n)
MIN_LT
⊢ ∀n m p. (MIN m n < p ⇔ m < p ∨ n < p) ∧ (p < MIN m n ⇔ p < m ∧ p < n)
MAX_LT
⊢ ∀n m p. (p < MAX m n ⇔ p < m ∨ p < n) ∧ (MAX m n < p ⇔ m < p ∧ n < p)
MIN_LE
⊢ ∀n m p. (MIN m n ≤ p ⇔ m ≤ p ∨ n ≤ p) ∧ (p ≤ MIN m n ⇔ p ≤ m ∧ p ≤ n)
MAX_LE
⊢ ∀n m p. (p ≤ MAX m n ⇔ p ≤ m ∨ p ≤ n) ∧ (MAX m n ≤ p ⇔ m ≤ p ∧ n ≤ p)
MIN_0
⊢ ∀n. MIN n 0 = 0 ∧ MIN 0 n = 0
MAX_0
⊢ ∀n. MAX n 0 = n ∧ MAX 0 n = n
MAX_EQ_0
⊢ MAX m n = 0 ⇔ m = 0 ∧ n = 0
MIN_EQ_0
⊢ MIN m n = 0 ⇔ m = 0 ∨ n = 0
MIN_IDEM
⊢ ∀n. MIN n n = n
MAX_IDEM
⊢ ∀n. MAX n n = n
EXISTS_GREATEST
⊢ ∀P. (∃x. P x) ∧ (∃x. ∀y. y > x ⇒ ¬P y) ⇔ ∃x. P x ∧ ∀y. y > x ⇒ ¬P y
EXISTS_NUM
⊢ ∀P. (∃n. P n) ⇔ P 0 ∨ ∃m. P (SUC m)
FORALL_NUM
⊢ ∀P. (∀n. P n) ⇔ P 0 ∧ ∀n. P (SUC n)
BOUNDED_FORALL_THM
⊢ ∀c. 0 < c ⇒ ((∀n. n < c ⇒ P n) ⇔ P (c − 1) ∧ ∀n. n < c − 1 ⇒ P n)
BOUNDED_EXISTS_THM
⊢ ∀c. 0 < c ⇒ ((∃n. n < c ∧ P n) ⇔ P (c − 1) ∨ ∃n. n < c − 1 ∧ P n)
transitive_monotone
⊢ ∀R f. transitive R ∧ (∀n. R (f n) (f (SUC n))) ⇒ ∀m n. m < n ⇒ R (f m) (f n)
STRICTLY_INCREASING_TC
⊢ ∀f. (∀n. f n < f (SUC n)) ⇒ ∀m n. m < n ⇒ f m < f n
STRICTLY_INCREASING_ONE_ONE
⊢ ∀f. (∀n. f n < f (SUC n)) ⇒ ONE_ONE f
ONE_ONE_INV_IMAGE_BOUNDED
⊢ ONE_ONE f ⇒ ∀b. ∃a. ∀x. f x ≤ b ⇒ x ≤ a
ONE_ONE_UNBOUNDED
⊢ ∀f. ONE_ONE f ⇒ ∀b. ∃n. b < f n
STRICTLY_INCREASING_UNBOUNDED
⊢ ∀f. (∀n. f n < f (SUC n)) ⇒ ∀b. ∃n. b < f n
NOT_STRICTLY_DECREASING
⊢ ∀f. ¬∀n. f (SUC n) < f n
ABS_DIFF_SYM
⊢ ∀n m. ABS_DIFF n m = ABS_DIFF m n
ABS_DIFF_COMM
⊢ ∀n m. ABS_DIFF n m = ABS_DIFF m n
ABS_DIFF_EQS
⊢ ∀n. ABS_DIFF n n = 0
ABS_DIFF_EQ_0
⊢ ∀n m. ABS_DIFF n m = 0 ⇔ n = m
ABS_DIFF_ZERO
⊢ ∀n. ABS_DIFF n 0 = n ∧ ABS_DIFF 0 n = n
ABS_DIFF_SUC
⊢ ∀n m. ABS_DIFF (SUC n) (SUC m) = ABS_DIFF n m
ABS_DIFF_SUC_LE
⊢ ∀x z. ABS_DIFF x (SUC z) ≤ SUC (ABS_DIFF x z)
ABS_DIFF_PLUS_LE
⊢ ∀x z y. ABS_DIFF x (y + z) ≤ y + ABS_DIFF x z
ABS_DIFF_LE_SUM
⊢ ABS_DIFF x z ≤ x + z
ABS_DIFF_TRIANGLE_lem
⊢ ∀x y. x ≤ ABS_DIFF x y + y
ABS_DIFF_TRIANGLE
⊢ ∀x y z. ABS_DIFF x z ≤ ABS_DIFF x y + ABS_DIFF y z
ABS_DIFF_ADD_SAME
⊢ ∀n m p. ABS_DIFF (n + p) (m + p) = ABS_DIFF n m
LE_SUB_RCANCEL
⊢ ∀m n p. n − m ≤ p − m ⇔ n ≤ m ∨ n ≤ p
LT_SUB_RCANCEL
⊢ ∀m n p. n − m < p − m ⇔ n < p ∧ m < p
LE_SUB_LCANCEL
⊢ ∀z y x. x − y ≤ x − z ⇔ z ≤ y ∨ x ≤ y
LT_SUB_LCANCEL
⊢ ∀z y x. x − y < x − z ⇔ z < y ∧ z < x
ABS_DIFF_SUMS
⊢ ∀n1 n2 m1 m2. ABS_DIFF (n1 + n2) (m1 + m2) ≤ ABS_DIFF n1 m1 + ABS_DIFF n2 m2
FUNPOW_SUC
⊢ ∀f n x. FUNPOW f (SUC n) x = f (FUNPOW f n x)
FUNPOW_0
⊢ FUNPOW f 0 x = x
FUNPOW_ADD
⊢ ∀m n. FUNPOW f (m + n) x = FUNPOW f m (FUNPOW f n x)
FUNPOW_1
⊢ FUNPOW f 1 x = f x
NRC_0
⊢ ∀R x y. NRC R 0 x y ⇔ x = y
NRC_1
⊢ NRC R 1 x y ⇔ R x y
NRC_ADD_I
⊢ ∀m n x y z. NRC R m x y ∧ NRC R n y z ⇒ NRC R (m + n) x z
NRC_ADD_E
⊢ ∀m n x z. NRC R (m + n) x z ⇒ ∃y. NRC R m x y ∧ NRC R n y z
NRC_ADD_EQN
⊢ NRC R (m + n) x z ⇔ ∃y. NRC R m x y ∧ NRC R n y z
NRC_SUC_RECURSE_LEFT
⊢ NRC R (SUC n) x y ⇔ ∃z. NRC R n x z ∧ R z y
NRC_RTC
⊢ ∀n x y. NRC R n x y ⇒ R^* x y
RTC_NRC
⊢ ∀x y. R^* x y ⇒ ∃n. NRC R n x y
RTC_eq_NRC
⊢ ∀R x y. R^* x y ⇔ ∃n. NRC R n x y
TC_eq_NRC
⊢ ∀R x y. R⁺ x y ⇔ ∃n. NRC R (SUC n) x y
LESS_EQUAL_DIFF
⊢ ∀m n. m ≤ n ⇒ ∃k. m = n − k
MOD_2
⊢ ∀n. n MOD 2 = if EVEN n then 0 else 1
EVEN_MOD2
⊢ ∀x. EVEN x ⇔ x MOD 2 = 0
SUC_MOD
⊢ ∀n a b. 0 < n ⇒ (SUC a MOD n = SUC b MOD n ⇔ a MOD n = b MOD n)
ADD_MOD
⊢ ∀n a b p. 0 < n ⇒ ((a + p) MOD n = (b + p) MOD n ⇔ a MOD n = b MOD n)
MOD_ELIM
⊢ ∀P x n. 0 < n ∧ P x ∧ (∀y. P (y + n) ⇒ P y) ⇒ P (x MOD n)
DOUBLE_LT
⊢ ∀p q. 2 * p + 1 < 2 * q ⇔ 2 * p < 2 * q
EXP2_LT
⊢ ∀m n. n DIV 2 < 2 ** m ⇔ n < 2 ** SUC m
SUB_LESS
⊢ ∀m n. 0 < n ∧ n ≤ m ⇒ m − n < m
SUB_MOD
⊢ ∀m n. 0 < n ∧ n ≤ m ⇒ (m − n) MOD n = m MOD n
ONE_LT_MULT_IMP
⊢ ∀p q. 1 < p ∧ 0 < q ⇒ 1 < p * q
ONE_LT_MULT
⊢ ∀x y. 1 < x * y ⇔ 0 < x ∧ 1 < y ∨ 0 < y ∧ 1 < x
ONE_LT_EXP
⊢ ∀x y. 1 < x ** y ⇔ 1 < x ∧ 0 < y
findq_thm
⊢ findq (a,m,n) = if n = 0 then a
  else (let d = 2 * n in if m < d then a else findq (2 * a,m,d))
findq_eq_0
⊢ ∀a m n. findq (a,m,n) = 0 ⇔ a = 0
findq_divisor
⊢ n ≤ m ⇒ findq (a,m,n) * n ≤ a * m
DIVMOD_THM
⊢ DIVMOD (a,m,n) = if n = 0 then (0,0) else if m < n then (a,m)
  else (let q = findq (1,m,n) in DIVMOD (a + q,m − n * q,n))
MOD_SUB
⊢ 0 < n ∧ n * q ≤ m ⇒ (m − n * q) MOD n = m MOD n
DIV_SUB
⊢ 0 < n ∧ n * q ≤ m ⇒ (m − n * q) DIV n = m DIV n − q
DIVMOD_CORRECT
⊢ ∀m n a. 0 < n ⇒ DIVMOD (a,m,n) = (a + m DIV n,m MOD n)
DIVMOD_CALC
⊢ (∀m n. 0 < n ⇒ m DIV n = FST (DIVMOD (0,m,n))) ∧
  ∀m n. 0 < n ⇒ m MOD n = SND (DIVMOD (0,m,n))
MODEQ_0_CONG
⊢ MODEQ 0 m1 m2 ⇔ m1 = m2
MODEQ_NONZERO_MODEQUALITY
⊢ 0 < n ⇒ (MODEQ n m1 m2 ⇔ m1 MOD n = m2 MOD n)
MODEQ_THM
⊢ MODEQ n m1 m2 ⇔ n = 0 ∧ m1 = m2 ∨ 0 < n ∧ m1 MOD n = m2 MOD n
MODEQ_INTRO_CONG
⊢ 0 < n ⇒ MODEQ n e0 e1 ⇒ e0 MOD n = e1 MOD n
MODEQ_PLUS_CONG
⊢ MODEQ n x0 x1 ⇒ MODEQ n y0 y1 ⇒ MODEQ n (x0 + y0) (x1 + y1)
MODEQ_MULT_CONG
⊢ MODEQ n x0 x1 ⇒ MODEQ n y0 y1 ⇒ MODEQ n (x0 * y0) (x1 * y1)
MODEQ_REFL
⊢ ∀x. MODEQ n x x
MODEQ_SUC_CONG
⊢ MODEQ n x y ⇒ MODEQ n (SUC x) (SUC y)
MODEQ_EXP_CONG
⊢ MODEQ n x y ⇒ MODEQ n (x ** e) (y ** e)
EXP_MOD
⊢ 0 < n ⇒ (x MOD n) ** e MOD n = x ** e MOD n
MODEQ_SYM
⊢ MODEQ n x y ⇔ MODEQ n y x
MODEQ_TRANS
⊢ ∀x y z. MODEQ n x y ∧ MODEQ n y z ⇒ MODEQ n x z
MODEQ_NUMERAL
⊢ (NUMERAL n ≤ NUMERAL m ⇒
   MODEQ (NUMERAL (BIT1 n)) (NUMERAL (BIT1 m))
     (NUMERAL (BIT1 m) MOD NUMERAL (BIT1 n))) ∧
  (NUMERAL n ≤ NUMERAL m ⇒
   MODEQ (NUMERAL (BIT1 n)) (NUMERAL (BIT2 m))
     (NUMERAL (BIT2 m) MOD NUMERAL (BIT1 n))) ∧
  (NUMERAL n ≤ NUMERAL m ⇒
   MODEQ (NUMERAL (BIT2 n)) (NUMERAL (BIT2 m))
     (NUMERAL (BIT2 m) MOD NUMERAL (BIT2 n))) ∧
  (NUMERAL n < NUMERAL m ⇒
   MODEQ (NUMERAL (BIT2 n)) (NUMERAL (BIT1 m))
     (NUMERAL (BIT1 m) MOD NUMERAL (BIT2 n)))
MODEQ_MOD
⊢ 0 < n ⇒ MODEQ n (x MOD n) x
MODEQ_0
⊢ 0 < n ⇒ MODEQ n n 0
num_case_eq
⊢ num_CASE n zc sc = v ⇔ n = 0 ∧ zc = v ∨ ∃x. n = SUC x ∧ sc x = v
datatype_num
⊢ DATATYPE (num 0 SUC)