- ONE
-
⊢ 1 = SUC 0
- TWO
-
⊢ 2 = SUC 1
- NORM_0
-
⊢ 0 = 0
- num_case_compute
-
⊢ ∀n. num_CASE n f g = if n = 0 then f else g (PRE n)
- SUC_NOT
-
⊢ ∀n. 0 ≠ SUC n
- ADD_0
-
⊢ ∀m. m + 0 = m
- ADD_SUC
-
⊢ ∀m n. SUC (m + n) = m + SUC n
- ADD_CLAUSES
-
⊢ 0 + m = m ∧ m + 0 = m ∧ SUC m + n = SUC (m + n) ∧ m + SUC n = SUC (m + n)
- ADD_SYM
-
⊢ ∀m n. m + n = n + m
- ADD_COMM
-
⊢ ∀m n. m + n = n + m
- ADD_ASSOC
-
⊢ ∀m n p. m + (n + p) = m + n + p
- num_CASES
-
⊢ ∀m. m = 0 ∨ ∃n. m = SUC n
- NOT_ZERO_LT_ZERO
-
⊢ ∀n. n ≠ 0 ⇔ 0 < n
- NOT_LT_ZERO_EQ_ZERO
-
⊢ ∀n. ¬(0 < n) ⇔ n = 0
- LESS_OR_EQ_ALT
-
⊢ $<= = (λx y. y = SUC x)^*
- LESS_ADD
-
⊢ ∀m n. n < m ⇒ ∃p. p + n = m
- transitive_LESS
-
⊢ transitive $<
- LESS_TRANS
-
⊢ ∀m n p. m < n ∧ n < p ⇒ m < p
- LESS_ANTISYM
-
⊢ ∀m n. ¬(m < n ∧ n < m)
- LESS_MONO_REV
-
⊢ ∀m n. SUC m < SUC n ⇒ m < n
- LESS_MONO_EQ
-
⊢ ∀m n. SUC m < SUC n ⇔ m < n
- LESS_EQ_MONO
-
⊢ ∀n m. SUC n ≤ SUC m ⇔ n ≤ m
- LESS_LESS_SUC
-
⊢ ∀m n. ¬(m < n ∧ n < SUC m)
- transitive_measure
-
⊢ ∀f. transitive (measure f)
- LESS_EQ
-
⊢ ∀m n. m < n ⇔ SUC m ≤ n
- LESS_OR
-
⊢ ∀m n. m < n ⇒ SUC m ≤ n
- OR_LESS
-
⊢ ∀m n. SUC m ≤ n ⇒ m < n
- LESS_EQ_IFF_LESS_SUC
-
⊢ ∀n m. n ≤ m ⇔ n < SUC m
- LESS_EQ_IMP_LESS_SUC
-
⊢ ∀n m. n ≤ m ⇒ n < SUC m
- ZERO_LESS_EQ
-
⊢ ∀n. 0 ≤ n
- LESS_SUC_EQ_COR
-
⊢ ∀m n. m < n ∧ SUC m ≠ n ⇒ SUC m < n
- LESS_NOT_SUC
-
⊢ ∀m n. m < n ∧ n ≠ SUC m ⇒ SUC m < n
- LESS_0_CASES
-
⊢ ∀m. 0 = m ∨ 0 < m
- LESS_CASES_IMP
-
⊢ ∀m n. ¬(m < n) ∧ m ≠ n ⇒ n < m
- LESS_CASES
-
⊢ ∀m n. m < n ∨ n ≤ m
- ADD_INV_0
-
⊢ ∀m n. m + n = m ⇒ n = 0
- LESS_EQ_ADD
-
⊢ ∀m n. m ≤ m + n
- LESS_EQ_ADD_EXISTS
-
⊢ ∀m n. n ≤ m ⇒ ∃p. p + n = m
- LESS_STRONG_ADD
-
⊢ ∀m n. n < m ⇒ ∃p. SUC p + n = m
- LESS_EQ_SUC_REFL
-
⊢ ∀m. m ≤ SUC m
- LESS_ADD_NONZERO
-
⊢ ∀m n. n ≠ 0 ⇒ m < m + n
- NOT_SUC_LESS_EQ_0
-
⊢ ∀n. ¬(SUC n ≤ 0)
- NOT_LESS
-
⊢ ∀m n. ¬(m < n) ⇔ n ≤ m
- NOT_LESS_EQUAL
-
⊢ ∀m n. ¬(m ≤ n) ⇔ n < m
- LESS_EQ_ANTISYM
-
⊢ ∀m n. ¬(m < n ∧ n ≤ m)
- LESS_EQ_0
-
⊢ ∀n. n ≤ 0 ⇔ n = 0
- SUB_0
-
⊢ ∀m. 0 − m = 0 ∧ m − 0 = m
- SUB_MONO_EQ
-
⊢ ∀n m. SUC n − SUC m = n − m
- SUB_EQ_0
-
⊢ ∀m n. m − n = 0 ⇔ m ≤ n
- ADD1
-
⊢ ∀m. SUC m = m + 1
- SUC_SUB1
-
⊢ ∀m. SUC m − 1 = m
- PRE_SUB1
-
⊢ ∀m. PRE m = m − 1
- MULT_0
-
⊢ ∀m. m * 0 = 0
- MULT_SUC
-
⊢ ∀m n. m * SUC n = m + m * n
- MULT_LEFT_1
-
⊢ ∀m. 1 * m = m
- MULT_RIGHT_1
-
⊢ ∀m. m * 1 = m
- MULT_CLAUSES
-
⊢ ∀m n.
0 * m = 0 ∧ m * 0 = 0 ∧ 1 * m = m ∧ m * 1 = m ∧ SUC m * n = m * n + n ∧
m * SUC n = m + m * n
- MULT_SYM
-
⊢ ∀m n. m * n = n * m
- MULT_COMM
-
⊢ ∀m n. m * n = n * m
- RIGHT_ADD_DISTRIB
-
⊢ ∀m n p. (m + n) * p = m * p + n * p
- LEFT_ADD_DISTRIB
-
⊢ ∀m n p. p * (m + n) = p * m + p * n
- MULT_ASSOC
-
⊢ ∀m n p. m * (n * p) = m * n * p
- SUB_ADD
-
⊢ ∀m n. n ≤ m ⇒ m − n + n = m
- PRE_SUB
-
⊢ ∀m n. PRE (m − n) = PRE m − n
- ADD_EQ_0
-
⊢ ∀m n. m + n = 0 ⇔ m = 0 ∧ n = 0
- ADD_EQ_1
-
⊢ ∀m n. m + n = 1 ⇔ m = 1 ∧ n = 0 ∨ m = 0 ∧ n = 1
- ADD_INV_0_EQ
-
⊢ ∀m n. m + n = m ⇔ n = 0
- PRE_SUC_EQ
-
⊢ ∀m n. 0 < n ⇒ (m = PRE n ⇔ SUC m = n)
- INV_PRE_EQ
-
⊢ ∀m n. 0 < m ∧ 0 < n ⇒ (PRE m = PRE n ⇔ m = n)
- LESS_SUC_NOT
-
⊢ ∀m n. m < n ⇒ ¬(n < SUC m)
- ADD_EQ_SUB
-
⊢ ∀m n p. n ≤ p ⇒ (m + n = p ⇔ m = p − n)
- LESS_MONO_ADD
-
⊢ ∀m n p. m < n ⇒ m + p < n + p
- LESS_MONO_ADD_INV
-
⊢ ∀m n p. m + p < n + p ⇒ m < n
- LESS_MONO_ADD_EQ
-
⊢ ∀m n p. m + p < n + p ⇔ m < n
- LT_ADD_RCANCEL
-
⊢ ∀m n p. m + p < n + p ⇔ m < n
- LT_ADD_LCANCEL
-
⊢ ∀m n p. p + m < p + n ⇔ m < n
- EQ_MONO_ADD_EQ
-
⊢ ∀m n p. m + p = n + p ⇔ m = n
- LESS_EQ_MONO_ADD_EQ
-
⊢ ∀m n p. m + p ≤ n + p ⇔ m ≤ n
- LESS_EQ_TRANS
-
⊢ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
- LESS_EQ_LESS_TRANS
-
⊢ ∀m n p. m ≤ n ∧ n < p ⇒ m < p
- LESS_LESS_EQ_TRANS
-
⊢ ∀m n p. m < n ∧ n ≤ p ⇒ m < p
- LESS_EQ_LESS_EQ_MONO
-
⊢ ∀m n p q. m ≤ p ∧ n ≤ q ⇒ m + n ≤ p + q
- LESS_EQ_REFL
-
⊢ ∀m. m ≤ m
- LESS_IMP_LESS_OR_EQ
-
⊢ ∀m n. m < n ⇒ m ≤ n
- LESS_MONO_MULT
-
⊢ ∀m n p. m ≤ n ⇒ m * p ≤ n * p
- LESS_MONO_MULT2
-
⊢ ∀m n i j. m ≤ i ∧ n ≤ j ⇒ m * n ≤ i * j
- RIGHT_SUB_DISTRIB
-
⊢ ∀m n p. (m − n) * p = m * p − n * p
- LEFT_SUB_DISTRIB
-
⊢ ∀m n p. p * (m − n) = p * m − p * n
- LESS_ADD_1
-
⊢ ∀m n. n < m ⇒ ∃p. m = n + (p + 1)
- EXP_ADD
-
⊢ ∀p q n. n ** (p + q) = n ** p * n ** q
- NOT_ODD_EQ_EVEN
-
⊢ ∀n m. SUC (n + n) ≠ m + m
- LESS_EQUAL_ANTISYM
-
⊢ ∀n m. n ≤ m ∧ m ≤ n ⇒ n = m
- LESS_ADD_SUC
-
⊢ ∀m n. m < m + SUC n
- LESS_OR_EQ_ADD
-
⊢ ∀n m. n < m ∨ ∃p. n = p + m
- WOP
-
⊢ ∀P. (∃n. P n) ⇒ ∃n. P n ∧ ∀m. m < n ⇒ ¬P m
- COMPLETE_INDUCTION
-
⊢ ∀P. (∀n. (∀m. m < n ⇒ P m) ⇒ P n) ⇒ ∀n. P n
- FORALL_NUM_THM
-
⊢ (∀n. P n) ⇔ P 0 ∧ ∀n. P n ⇒ P (SUC n)
- SUC_SUB
-
⊢ ∀a. SUC a − a = 1
- SUB_PLUS
-
⊢ ∀a b c. a − (b + c) = a − b − c
- INV_PRE_LESS
-
⊢ ∀m. 0 < m ⇒ ∀n. PRE m < PRE n ⇔ m < n
- INV_PRE_LESS_EQ
-
⊢ ∀n. 0 < n ⇒ ∀m. PRE m ≤ PRE n ⇔ m ≤ n
- PRE_LESS_EQ
-
⊢ ∀n. m ≤ n ⇒ PRE m ≤ PRE n
- SUB_LESS_EQ
-
⊢ ∀n m. n − m ≤ n
- SUB_EQ_EQ_0
-
⊢ ∀m n. m − n = m ⇔ m = 0 ∨ n = 0
- SUB_LESS_0
-
⊢ ∀n m. m < n ⇔ 0 < n − m
- SUB_LESS_OR
-
⊢ ∀m n. n < m ⇒ n ≤ m − 1
- LESS_SUB_ADD_LESS
-
⊢ ∀n m i. i < n − m ⇒ i + m < n
- TIMES2
-
⊢ ∀n. 2 * n = n + n
- LESS_MULT_MONO
-
⊢ ∀m i n. SUC n * m < SUC n * i ⇔ m < i
- MULT_MONO_EQ
-
⊢ ∀m i n. SUC n * m = SUC n * i ⇔ m = i
- MULT_SUC_EQ
-
⊢ ∀p m n. n * SUC p = m * SUC p ⇔ n = m
- MULT_EXP_MONO
-
⊢ ∀p q n m. n * SUC q ** p = m * SUC q ** p ⇔ n = m
- EQ_ADD_LCANCEL
-
⊢ ∀m n p. m + n = m + p ⇔ n = p
- EQ_ADD_RCANCEL
-
⊢ ∀m n p. m + p = n + p ⇔ m = n
- EQ_MULT_LCANCEL
-
⊢ ∀m n p. m * n = m * p ⇔ m = 0 ∨ n = p
- EQ_MULT_RCANCEL
-
⊢ ∀m n p. n * m = p * m ⇔ m = 0 ∨ n = p
- ADD_SUB
-
⊢ ∀a c. a + c − c = a
- LESS_EQ_ADD_SUB
-
⊢ ∀c b. c ≤ b ⇒ ∀a. a + b − c = a + (b − c)
- SUB_EQUAL_0
-
⊢ ∀c. c − c = 0
- LESS_EQ_SUB_LESS
-
⊢ ∀a b. b ≤ a ⇒ ∀c. a − b < c ⇔ a < b + c
- NOT_SUC_LESS_EQ
-
⊢ ∀n m. ¬(SUC n ≤ m) ⇔ m ≤ n
- SUB_SUB
-
⊢ ∀b c. c ≤ b ⇒ ∀a. a − (b − c) = a + c − b
- LESS_IMP_LESS_ADD
-
⊢ ∀n m. n < m ⇒ ∀p. n < m + p
- SUB_LESS_EQ_ADD
-
⊢ ∀m p. m ≤ p ⇒ ∀n. p − m ≤ n ⇔ p ≤ m + n
- SUB_LESS_SUC
-
⊢ ∀p m. p − m < SUC p
- SUB_CANCEL
-
⊢ ∀p n m. n ≤ p ∧ m ≤ p ⇒ (p − n = p − m ⇔ n = m)
- CANCEL_SUB
-
⊢ ∀p n m. p ≤ n ∧ p ≤ m ⇒ (n − p = m − p ⇔ n = m)
- NOT_EXP_0
-
⊢ ∀m n. SUC n ** m ≠ 0
- ZERO_LESS_EXP
-
⊢ ∀m n. 0 < SUC n ** m
- ODD_OR_EVEN
-
⊢ ∀n. ∃m. n = SUC (SUC 0) * m ∨ n = SUC (SUC 0) * m + 1
- LESS_EXP_SUC_MONO
-
⊢ ∀n m. SUC (SUC m) ** n < SUC (SUC m) ** SUC n
- LESS_LESS_CASES
-
⊢ ∀m n. m = n ∨ m < n ∨ n < m
- GREATER_EQ
-
⊢ ∀n m. n ≥ m ⇔ m ≤ n
- LESS_EQ_CASES
-
⊢ ∀m n. m ≤ n ∨ n ≤ m
- LESS_EQUAL_ADD
-
⊢ ∀m n. m ≤ n ⇒ ∃p. n = m + p
- LESS_EQ_EXISTS
-
⊢ ∀m n. m ≤ n ⇔ ∃p. n = m + p
- MULT_EQ_0
-
⊢ ∀m n. m * n = 0 ⇔ m = 0 ∨ n = 0
- MULT_EQ_1
-
⊢ ∀x y. x * y = 1 ⇔ x = 1 ∧ y = 1
- MULT_EQ_ID
-
⊢ ∀m n. m * n = n ⇔ m = 1 ∨ n = 0
- LESS_MULT2
-
⊢ ∀m n. 0 < m ∧ 0 < n ⇒ 0 < m * n
- ZERO_LESS_MULT
-
⊢ ∀m n. 0 < m * n ⇔ 0 < m ∧ 0 < n
- ZERO_LESS_ADD
-
⊢ ∀m n. 0 < m + n ⇔ 0 < m ∨ 0 < n
- FACT_LESS
-
⊢ ∀n. 0 < FACT n
- EVEN_ODD
-
⊢ ∀n. EVEN n ⇔ ¬ODD n
- ODD_EVEN
-
⊢ ∀n. ODD n ⇔ ¬EVEN n
- EVEN_OR_ODD
-
⊢ ∀n. EVEN n ∨ ODD n
- EVEN_AND_ODD
-
⊢ ∀n. ¬(EVEN n ∧ ODD n)
- EVEN_ADD
-
⊢ ∀m n. EVEN (m + n) ⇔ (EVEN m ⇔ EVEN n)
- EVEN_MULT
-
⊢ ∀m n. EVEN (m * n) ⇔ EVEN m ∨ EVEN n
- ODD_ADD
-
⊢ ∀m n. ODD (m + n) ⇔ (ODD m ⇎ ODD n)
- ODD_MULT
-
⊢ ∀m n. ODD (m * n) ⇔ ODD m ∧ ODD n
- EVEN_DOUBLE
-
⊢ ∀n. EVEN (2 * n)
- ODD_DOUBLE
-
⊢ ∀n. ODD (SUC (2 * n))
- EVEN_ODD_EXISTS
-
⊢ ∀n. (EVEN n ⇒ ∃m. n = 2 * m) ∧ (ODD n ⇒ ∃m. n = SUC (2 * m))
- EVEN_EXISTS
-
⊢ ∀n. EVEN n ⇔ ∃m. n = 2 * m
- ODD_EXISTS
-
⊢ ∀n. ODD n ⇔ ∃m. n = SUC (2 * m)
- EVEN_EXP_IFF
-
⊢ ∀n m. EVEN (m ** n) ⇔ 0 < n ∧ EVEN m
- EVEN_EXP
-
⊢ ∀m n. 0 < n ∧ EVEN m ⇒ EVEN (m ** n)
- ODD_EXP_IFF
-
⊢ ∀n m. ODD (m ** n) ⇔ n = 0 ∨ ODD m
- ODD_EXP
-
⊢ ∀m n. 0 < n ∧ ODD m ⇒ ODD (m ** n)
- EQ_LESS_EQ
-
⊢ ∀m n. m = n ⇔ m ≤ n ∧ n ≤ m
- ADD_MONO_LESS_EQ
-
⊢ ∀m n p. m + n ≤ m + p ⇔ n ≤ p
- LE_ADD_LCANCEL
-
⊢ ∀m n p. m + n ≤ m + p ⇔ n ≤ p
- LE_ADD_RCANCEL
-
⊢ ∀m n p. n + m ≤ p + m ⇔ n ≤ p
- NOT_LEQ
-
⊢ ∀m n. ¬(m ≤ n) ⇔ SUC n ≤ m
- NOT_NUM_EQ
-
⊢ ∀m n. m ≠ n ⇔ SUC m ≤ n ∨ SUC n ≤ m
- NOT_GREATER
-
⊢ ∀m n. ¬(m > n) ⇔ m ≤ n
- NOT_GREATER_EQ
-
⊢ ∀m n. ¬(m ≥ n) ⇔ SUC m ≤ n
- SUC_ONE_ADD
-
⊢ ∀n. SUC n = 1 + n
- SUC_ADD_SYM
-
⊢ ∀m n. SUC (m + n) = SUC n + m
- NOT_SUC_ADD_LESS_EQ
-
⊢ ∀m n. ¬(SUC (m + n) ≤ m)
- MULT_LESS_EQ_SUC
-
⊢ ∀m n p. m ≤ n ⇔ SUC p * m ≤ SUC p * n
- LE_MULT_LCANCEL
-
⊢ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
- LE_MULT_RCANCEL
-
⊢ ∀m n p. m * n ≤ p * n ⇔ n = 0 ∨ m ≤ p
- LT_MULT_LCANCEL
-
⊢ ∀m n p. m * n < m * p ⇔ 0 < m ∧ n < p
- LT_MULT_RCANCEL
-
⊢ ∀m n p. m * n < p * n ⇔ 0 < n ∧ m < p
- LT_MULT_CANCEL_LBARE
-
⊢ (m < m * n ⇔ 0 < m ∧ 1 < n) ∧ (m < n * m ⇔ 0 < m ∧ 1 < n)
- LT_MULT_CANCEL_RBARE
-
⊢ (m * n < m ⇔ 0 < m ∧ n = 0) ∧ (m * n < n ⇔ 0 < n ∧ m = 0)
- LE_MULT_CANCEL_LBARE
-
⊢ (m ≤ m * n ⇔ m = 0 ∨ 0 < n) ∧ (m ≤ n * m ⇔ m = 0 ∨ 0 < n)
- LE_MULT_CANCEL_RBARE
-
⊢ (m * n ≤ m ⇔ m = 0 ∨ n ≤ 1) ∧ (m * n ≤ n ⇔ n = 0 ∨ m ≤ 1)
- SUB_LEFT_ADD
-
⊢ ∀m n p. m + (n − p) = if n ≤ p then m else m + n − p
- SUB_RIGHT_ADD
-
⊢ ∀m n p. m − n + p = if m ≤ n then p else m + p − n
- SUB_LEFT_SUB
-
⊢ ∀m n p. m − (n − p) = if n ≤ p then m else m + p − n
- SUB_RIGHT_SUB
-
⊢ ∀m n p. m − n − p = m − (n + p)
- SUB_LEFT_SUC
-
⊢ ∀m n. SUC (m − n) = if m ≤ n then SUC 0 else SUC m − n
- SUB_LEFT_LESS_EQ
-
⊢ ∀m n p. m ≤ n − p ⇔ m + p ≤ n ∨ m ≤ 0
- SUB_RIGHT_LESS_EQ
-
⊢ ∀m n p. m − n ≤ p ⇔ m ≤ n + p
- SUB_LEFT_LESS
-
⊢ ∀m n p. m < n − p ⇔ m + p < n
- SUB_RIGHT_LESS
-
⊢ ∀m n p. m − n < p ⇔ m < n + p ∧ 0 < p
- SUB_LEFT_GREATER_EQ
-
⊢ ∀m n p. m ≥ n − p ⇔ m + p ≥ n
- SUB_RIGHT_GREATER_EQ
-
⊢ ∀m n p. m − n ≥ p ⇔ m ≥ n + p ∨ 0 ≥ p
- SUB_LEFT_GREATER
-
⊢ ∀m n p. m > n − p ⇔ m + p > n ∧ m > 0
- SUB_RIGHT_GREATER
-
⊢ ∀m n p. m − n > p ⇔ m > n + p
- SUB_LEFT_EQ
-
⊢ ∀m n p. m = n − p ⇔ m + p = n ∨ m ≤ 0 ∧ n ≤ p
- SUB_RIGHT_EQ
-
⊢ ∀m n p. m − n = p ⇔ m = n + p ∨ m ≤ n ∧ p ≤ 0
- LE
-
⊢ (∀n. n ≤ 0 ⇔ n = 0) ∧ ∀m n. m ≤ SUC n ⇔ m = SUC n ∨ m ≤ n
- DA
-
⊢ ∀k n. 0 < n ⇒ ∃r q. k = q * n + r ∧ r < n
- MOD_ONE
-
⊢ ∀k. k MOD SUC 0 = 0
- MOD_1
-
⊢ ∀k. k MOD 1 = 0
- DIV_LESS_EQ
-
⊢ ∀n. 0 < n ⇒ ∀k. k DIV n ≤ k
- DIV_UNIQUE
-
⊢ ∀n k q. (∃r. k = q * n + r ∧ r < n) ⇒ k DIV n = q
- MOD_UNIQUE
-
⊢ ∀n k r. (∃q. k = q * n + r ∧ r < n) ⇒ k MOD n = r
- DIV_MULT
-
⊢ ∀n r. r < n ⇒ ∀q. (q * n + r) DIV n = q
- LESS_MOD
-
⊢ ∀n k. k < n ⇒ k MOD n = k
- MOD_EQ_0
-
⊢ ∀n. 0 < n ⇒ ∀k. (k * n) MOD n = 0
- ZERO_MOD
-
⊢ ∀n. 0 < n ⇒ 0 MOD n = 0
- ZERO_DIV
-
⊢ ∀n. 0 < n ⇒ 0 DIV n = 0
- MOD_MULT
-
⊢ ∀n r. r < n ⇒ ∀q. (q * n + r) MOD n = r
- MOD_TIMES
-
⊢ ∀n. 0 < n ⇒ ∀q r. (q * n + r) MOD n = r MOD n
- MOD_TIMES_SUB
-
⊢ ∀n q r. 0 < n ∧ 0 < q ∧ r ≤ n ⇒ (q * n − r) MOD n = (n − r) MOD n
- MOD_PLUS
-
⊢ ∀n. 0 < n ⇒ ∀j k. (j MOD n + k MOD n) MOD n = (j + k) MOD n
- MOD_MOD
-
⊢ ∀n. 0 < n ⇒ ∀k. k MOD n MOD n = k MOD n
- LESS_DIV_EQ_ZERO
-
⊢ ∀r n. r < n ⇒ r DIV n = 0
- MULT_DIV
-
⊢ ∀n q. 0 < n ⇒ q * n DIV n = q
- ADD_DIV_ADD_DIV
-
⊢ ∀n. 0 < n ⇒ ∀x r. (x * n + r) DIV n = x + r DIV n
- ADD_DIV_RWT
-
⊢ ∀n.
0 < n ⇒
∀m p. m MOD n = 0 ∨ p MOD n = 0 ⇒ (m + p) DIV n = m DIV n + p DIV n
- MOD_MULT_MOD
-
⊢ ∀m n. 0 < n ∧ 0 < m ⇒ ∀x. x MOD (n * m) MOD n = x MOD n
- DIV_ONE
-
⊢ ∀q. q DIV SUC 0 = q
- DIV_1
-
⊢ ∀q. q DIV 1 = q
- DIVMOD_ID
-
⊢ ∀n. 0 < n ⇒ n DIV n = 1 ∧ n MOD n = 0
- DIV_DIV_DIV_MULT
-
⊢ ∀m n. 0 < m ∧ 0 < n ⇒ ∀x. x DIV m DIV n = x DIV (m * n)
- SUC_PRE
-
⊢ 0 < m ⇔ SUC (PRE m) = m
- DIV_LESS
-
⊢ ∀n d. 0 < n ∧ 1 < d ⇒ n DIV d < n
- MOD_LESS
-
⊢ ∀m n. 0 < n ⇒ m MOD n < n
- ADD_MODULUS
-
⊢ (∀n x. 0 < n ⇒ (x + n) MOD n = x MOD n) ∧
∀n x. 0 < n ⇒ (n + x) MOD n = x MOD n
- ADD_MODULUS_LEFT
-
⊢ ∀n x. 0 < n ⇒ (x + n) MOD n = x MOD n
- ADD_MODULUS_RIGHT
-
⊢ ∀n x. 0 < n ⇒ (n + x) MOD n = x MOD n
- DIV_P
-
⊢ ∀P p q. 0 < q ⇒ (P (p DIV q) ⇔ ∃k r. p = k * q + r ∧ r < q ∧ P k)
- DIV_P_UNIV
-
⊢ ∀P m n. 0 < n ⇒ (P (m DIV n) ⇔ ∀q r. m = q * n + r ∧ r < n ⇒ P q)
- MOD_P
-
⊢ ∀P p q. 0 < q ⇒ (P (p MOD q) ⇔ ∃k r. p = k * q + r ∧ r < q ∧ P r)
- MOD_P_UNIV
-
⊢ ∀P m n. 0 < n ⇒ (P (m MOD n) ⇔ ∀q r. m = q * n + r ∧ r < n ⇒ P r)
- MOD_TIMES2
-
⊢ ∀n. 0 < n ⇒ ∀j k. (j MOD n * k MOD n) MOD n = (j * k) MOD n
- MOD_COMMON_FACTOR
-
⊢ ∀n p q. 0 < n ∧ 0 < q ⇒ n * p MOD q = (n * p) MOD (n * q)
- X_MOD_Y_EQ_X
-
⊢ ∀x y. 0 < y ⇒ (x MOD y = x ⇔ x < y)
- DIV_LE_MONOTONE
-
⊢ ∀n x y. 0 < n ∧ x ≤ y ⇒ x DIV n ≤ y DIV n
- LE_LT1
-
⊢ ∀x y. x ≤ y ⇔ x < y + 1
- X_LE_DIV
-
⊢ ∀x y z. 0 < z ⇒ (x ≤ y DIV z ⇔ x * z ≤ y)
- X_LT_DIV
-
⊢ ∀x y z. 0 < z ⇒ (x < y DIV z ⇔ (x + 1) * z ≤ y)
- DIV_LT_X
-
⊢ ∀x y z. 0 < z ⇒ (y DIV z < x ⇔ y < x * z)
- DIV_LE_X
-
⊢ ∀x y z. 0 < z ⇒ (y DIV z ≤ x ⇔ y < (x + 1) * z)
- DIV_EQ_X
-
⊢ ∀x y z. 0 < z ⇒ (y DIV z = x ⇔ x * z ≤ y ∧ y < SUC x * z)
- DIV_MOD_MOD_DIV
-
⊢ ∀m n k. 0 < n ∧ 0 < k ⇒ (m DIV n) MOD k = m MOD (n * k) DIV n
- MULT_EQ_DIV
-
⊢ 0 < x ⇒ (x * y = z ⇔ y = z DIV x ∧ z MOD x = 0)
- NUMERAL_MULT_EQ_DIV
-
⊢ (NUMERAL (BIT1 x) * y = NUMERAL z ⇔
y = NUMERAL z DIV NUMERAL (BIT1 x) ∧ NUMERAL z MOD NUMERAL (BIT1 x) = 0) ∧
(NUMERAL (BIT2 x) * y = NUMERAL z ⇔
y = NUMERAL z DIV NUMERAL (BIT2 x) ∧ NUMERAL z MOD NUMERAL (BIT2 x) = 0)
- MOD_EQ_0_DIVISOR
-
⊢ 0 < n ⇒ (k MOD n = 0 ⇔ ∃d. k = d * n)
- MOD_SUC
-
⊢ 0 < y ∧ SUC x ≠ SUC (x DIV y) * y ⇒ SUC x MOD y = SUC (x MOD y)
- MOD_SUC_IFF
-
⊢ 0 < y ⇒ (SUC x MOD y = SUC (x MOD y) ⇔ SUC x ≠ SUC (x DIV y) * y)
- ONE_MOD
-
⊢ 1 < n ⇒ 1 MOD n = 1
- ONE_MOD_IFF
-
⊢ 1 < n ⇔ 0 < n ∧ 1 MOD n = 1
- MOD_LESS_EQ
-
⊢ 0 < y ⇒ x MOD y ≤ x
- MOD_LIFT_PLUS
-
⊢ 0 < n ∧ k < n − x MOD n ⇒ (x + k) MOD n = x MOD n + k
- MOD_LIFT_PLUS_IFF
-
⊢ 0 < n ⇒ ((x + k) MOD n = x MOD n + k ⇔ k < n − x MOD n)
- num_case_cong
-
⊢ ∀M M' v f.
M = M' ∧ (M' = 0 ⇒ v = v') ∧ (∀n. M' = SUC n ⇒ f n = f' n) ⇒
num_CASE M v f = num_CASE M' v' f'
- SUC_ELIM_THM
-
⊢ ∀P. (∀n. P (SUC n) n) ⇔ ∀n. 0 < n ⇒ P n (n − 1)
- SUC_ELIM_NUMERALS
-
⊢ ∀f g.
(∀n. g (SUC n) = f n (SUC n)) ⇔
(∀n. g (NUMERAL (BIT1 n)) = f (NUMERAL (BIT1 n) − 1) (NUMERAL (BIT1 n))) ∧
∀n. g (NUMERAL (BIT2 n)) = f (NUMERAL (BIT1 n)) (NUMERAL (BIT2 n))
- SUB_ELIM_THM
-
⊢ P (a − b) ⇔ ∀d. (b = a + d ⇒ P 0) ∧ (a = b + d ⇒ P d)
- PRE_ELIM_THM
-
⊢ P (PRE n) ⇔ ∀m. (n = 0 ⇒ P 0) ∧ (n = SUC m ⇒ P m)
- MULT_INCREASES
-
⊢ ∀m n. 1 < m ∧ 0 < n ⇒ SUC n ≤ m * n
- EXP_ALWAYS_BIG_ENOUGH
-
⊢ ∀b. 1 < b ⇒ ∀n. ∃m. n ≤ b ** m
- EXP_EQ_0
-
⊢ ∀n m. n ** m = 0 ⇔ n = 0 ∧ 0 < m
- ZERO_LT_EXP
-
⊢ 0 < x ** y ⇔ 0 < x ∨ y = 0
- EXP_1
-
⊢ ∀n. 1 ** n = 1 ∧ n ** 1 = n
- EXP_EQ_1
-
⊢ ∀n m. n ** m = 1 ⇔ n = 1 ∨ m = 0
- EXP_BASE_LE_MONO
-
⊢ ∀b. 1 < b ⇒ ∀n m. b ** m ≤ b ** n ⇔ m ≤ n
- EXP_BASE_LT_MONO
-
⊢ ∀b. 1 < b ⇒ ∀n m. b ** m < b ** n ⇔ m < n
- EXP_BASE_INJECTIVE
-
⊢ ∀b. 1 < b ⇒ ∀n m. b ** n = b ** m ⇔ n = m
- EXP_BASE_LEQ_MONO_IMP
-
⊢ ∀n m b. 0 < b ∧ m ≤ n ⇒ b ** m ≤ b ** n
- EXP_BASE_LEQ_MONO_SUC_IMP
-
⊢ m ≤ n ⇒ SUC b ** m ≤ SUC b ** n
- EXP_BASE_LE_IFF
-
⊢ b ** m ≤ b ** n ⇔ b = 0 ∧ n = 0 ∨ b = 0 ∧ 0 < m ∨ b = 1 ∨ 1 < b ∧ m ≤ n
- X_LE_X_EXP
-
⊢ 0 < n ⇒ x ≤ x ** n
- X_LT_EXP_X
-
⊢ 1 < b ⇒ x < b ** x
- ZERO_EXP
-
⊢ 0 ** x = if x = 0 then 1 else 0
- X_LT_EXP_X_IFF
-
⊢ x < b ** x ⇔ 1 < b ∨ x = 0
- EXP_EXP_LT_MONO
-
⊢ ∀a b. a ** n < b ** n ⇔ a < b ∧ 0 < n
- EXP_EXP_LE_MONO
-
⊢ ∀a b. a ** n ≤ b ** n ⇔ a ≤ b ∨ n = 0
- EXP_EXP_INJECTIVE
-
⊢ ∀b1 b2 x. b1 ** x = b2 ** x ⇔ x = 0 ∨ b1 = b2
- EXP_SUB
-
⊢ ∀p q n. 0 < n ∧ q ≤ p ⇒ n ** (p − q) = n ** p DIV n ** q
- EXP_SUB_NUMERAL
-
⊢ 0 < n ⇒
n ** NUMERAL (BIT1 x) DIV n = n ** (NUMERAL (BIT1 x) − 1) ∧
n ** NUMERAL (BIT2 x) DIV n = n ** NUMERAL (BIT1 x)
- EXP_BASE_MULT
-
⊢ ∀z x y. (x * y) ** z = x ** z * y ** z
- EXP_EXP_MULT
-
⊢ ∀z x y. x ** (y * z) = (x ** y) ** z
- MAX_COMM
-
⊢ ∀m n. MAX m n = MAX n m
- MIN_COMM
-
⊢ ∀m n. MIN m n = MIN n m
- MAX_ASSOC
-
⊢ ∀m n p. MAX m (MAX n p) = MAX (MAX m n) p
- MIN_ASSOC
-
⊢ ∀m n p. MIN m (MIN n p) = MIN (MIN m n) p
- MIN_MAX_EQ
-
⊢ ∀m n. MIN m n = MAX m n ⇔ m = n
- MIN_MAX_LT
-
⊢ ∀m n. MIN m n < MAX m n ⇔ m ≠ n
- MIN_MAX_LE
-
⊢ ∀m n. MIN m n ≤ MAX m n
- MIN_MAX_PRED
-
⊢ ∀P m n. P m ∧ P n ⇒ P (MIN m n) ∧ P (MAX m n)
- MIN_LT
-
⊢ ∀n m p. (MIN m n < p ⇔ m < p ∨ n < p) ∧ (p < MIN m n ⇔ p < m ∧ p < n)
- MAX_LT
-
⊢ ∀n m p. (p < MAX m n ⇔ p < m ∨ p < n) ∧ (MAX m n < p ⇔ m < p ∧ n < p)
- MIN_LE
-
⊢ ∀n m p. (MIN m n ≤ p ⇔ m ≤ p ∨ n ≤ p) ∧ (p ≤ MIN m n ⇔ p ≤ m ∧ p ≤ n)
- MAX_LE
-
⊢ ∀n m p. (p ≤ MAX m n ⇔ p ≤ m ∨ p ≤ n) ∧ (MAX m n ≤ p ⇔ m ≤ p ∧ n ≤ p)
- MIN_0
-
⊢ ∀n. MIN n 0 = 0 ∧ MIN 0 n = 0
- MAX_0
-
⊢ ∀n. MAX n 0 = n ∧ MAX 0 n = n
- MAX_EQ_0
-
⊢ MAX m n = 0 ⇔ m = 0 ∧ n = 0
- MIN_EQ_0
-
⊢ MIN m n = 0 ⇔ m = 0 ∨ n = 0
- MIN_IDEM
-
⊢ ∀n. MIN n n = n
- MAX_IDEM
-
⊢ ∀n. MAX n n = n
- EXISTS_GREATEST
-
⊢ ∀P. (∃x. P x) ∧ (∃x. ∀y. y > x ⇒ ¬P y) ⇔ ∃x. P x ∧ ∀y. y > x ⇒ ¬P y
- EXISTS_NUM
-
⊢ ∀P. (∃n. P n) ⇔ P 0 ∨ ∃m. P (SUC m)
- FORALL_NUM
-
⊢ ∀P. (∀n. P n) ⇔ P 0 ∧ ∀n. P (SUC n)
- BOUNDED_FORALL_THM
-
⊢ ∀c. 0 < c ⇒ ((∀n. n < c ⇒ P n) ⇔ P (c − 1) ∧ ∀n. n < c − 1 ⇒ P n)
- BOUNDED_EXISTS_THM
-
⊢ ∀c. 0 < c ⇒ ((∃n. n < c ∧ P n) ⇔ P (c − 1) ∨ ∃n. n < c − 1 ∧ P n)
- transitive_monotone
-
⊢ ∀R f. transitive R ∧ (∀n. R (f n) (f (SUC n))) ⇒ ∀m n. m < n ⇒ R (f m) (f n)
- STRICTLY_INCREASING_TC
-
⊢ ∀f. (∀n. f n < f (SUC n)) ⇒ ∀m n. m < n ⇒ f m < f n
- STRICTLY_INCREASING_ONE_ONE
-
⊢ ∀f. (∀n. f n < f (SUC n)) ⇒ ONE_ONE f
- ONE_ONE_INV_IMAGE_BOUNDED
-
⊢ ONE_ONE f ⇒ ∀b. ∃a. ∀x. f x ≤ b ⇒ x ≤ a
- ONE_ONE_UNBOUNDED
-
⊢ ∀f. ONE_ONE f ⇒ ∀b. ∃n. b < f n
- STRICTLY_INCREASING_UNBOUNDED
-
⊢ ∀f. (∀n. f n < f (SUC n)) ⇒ ∀b. ∃n. b < f n
- NOT_STRICTLY_DECREASING
-
⊢ ∀f. ¬∀n. f (SUC n) < f n
- ABS_DIFF_SYM
-
⊢ ∀n m. ABS_DIFF n m = ABS_DIFF m n
- ABS_DIFF_COMM
-
⊢ ∀n m. ABS_DIFF n m = ABS_DIFF m n
- ABS_DIFF_EQS
-
⊢ ∀n. ABS_DIFF n n = 0
- ABS_DIFF_EQ_0
-
⊢ ∀n m. ABS_DIFF n m = 0 ⇔ n = m
- ABS_DIFF_ZERO
-
⊢ ∀n. ABS_DIFF n 0 = n ∧ ABS_DIFF 0 n = n
- ABS_DIFF_SUC
-
⊢ ∀n m. ABS_DIFF (SUC n) (SUC m) = ABS_DIFF n m
- ABS_DIFF_SUC_LE
-
⊢ ∀x z. ABS_DIFF x (SUC z) ≤ SUC (ABS_DIFF x z)
- ABS_DIFF_PLUS_LE
-
⊢ ∀x z y. ABS_DIFF x (y + z) ≤ y + ABS_DIFF x z
- ABS_DIFF_LE_SUM
-
⊢ ABS_DIFF x z ≤ x + z
- ABS_DIFF_TRIANGLE_lem
-
⊢ ∀x y. x ≤ ABS_DIFF x y + y
- ABS_DIFF_TRIANGLE
-
⊢ ∀x y z. ABS_DIFF x z ≤ ABS_DIFF x y + ABS_DIFF y z
- ABS_DIFF_ADD_SAME
-
⊢ ∀n m p. ABS_DIFF (n + p) (m + p) = ABS_DIFF n m
- LE_SUB_RCANCEL
-
⊢ ∀m n p. n − m ≤ p − m ⇔ n ≤ m ∨ n ≤ p
- LT_SUB_RCANCEL
-
⊢ ∀m n p. n − m < p − m ⇔ n < p ∧ m < p
- LE_SUB_LCANCEL
-
⊢ ∀z y x. x − y ≤ x − z ⇔ z ≤ y ∨ x ≤ y
- LT_SUB_LCANCEL
-
⊢ ∀z y x. x − y < x − z ⇔ z < y ∧ z < x
- ABS_DIFF_SUMS
-
⊢ ∀n1 n2 m1 m2. ABS_DIFF (n1 + n2) (m1 + m2) ≤ ABS_DIFF n1 m1 + ABS_DIFF n2 m2
- FUNPOW_SUC
-
⊢ ∀f n x. FUNPOW f (SUC n) x = f (FUNPOW f n x)
- FUNPOW_0
-
⊢ FUNPOW f 0 x = x
- FUNPOW_ADD
-
⊢ ∀m n. FUNPOW f (m + n) x = FUNPOW f m (FUNPOW f n x)
- FUNPOW_1
-
⊢ FUNPOW f 1 x = f x
- NRC_0
-
⊢ ∀R x y. NRC R 0 x y ⇔ x = y
- NRC_1
-
⊢ NRC R 1 x y ⇔ R x y
- NRC_ADD_I
-
⊢ ∀m n x y z. NRC R m x y ∧ NRC R n y z ⇒ NRC R (m + n) x z
- NRC_ADD_E
-
⊢ ∀m n x z. NRC R (m + n) x z ⇒ ∃y. NRC R m x y ∧ NRC R n y z
- NRC_ADD_EQN
-
⊢ NRC R (m + n) x z ⇔ ∃y. NRC R m x y ∧ NRC R n y z
- NRC_SUC_RECURSE_LEFT
-
⊢ NRC R (SUC n) x y ⇔ ∃z. NRC R n x z ∧ R z y
- NRC_RTC
-
⊢ ∀n x y. NRC R n x y ⇒ R^* x y
- RTC_NRC
-
⊢ ∀x y. R^* x y ⇒ ∃n. NRC R n x y
- RTC_eq_NRC
-
⊢ ∀R x y. R^* x y ⇔ ∃n. NRC R n x y
- TC_eq_NRC
-
⊢ ∀R x y. R⁺ x y ⇔ ∃n. NRC R (SUC n) x y
- LESS_EQUAL_DIFF
-
⊢ ∀m n. m ≤ n ⇒ ∃k. m = n − k
- MOD_2
-
⊢ ∀n. n MOD 2 = if EVEN n then 0 else 1
- EVEN_MOD2
-
⊢ ∀x. EVEN x ⇔ x MOD 2 = 0
- SUC_MOD
-
⊢ ∀n a b. 0 < n ⇒ (SUC a MOD n = SUC b MOD n ⇔ a MOD n = b MOD n)
- ADD_MOD
-
⊢ ∀n a b p. 0 < n ⇒ ((a + p) MOD n = (b + p) MOD n ⇔ a MOD n = b MOD n)
- MOD_ELIM
-
⊢ ∀P x n. 0 < n ∧ P x ∧ (∀y. P (y + n) ⇒ P y) ⇒ P (x MOD n)
- DOUBLE_LT
-
⊢ ∀p q. 2 * p + 1 < 2 * q ⇔ 2 * p < 2 * q
- EXP2_LT
-
⊢ ∀m n. n DIV 2 < 2 ** m ⇔ n < 2 ** SUC m
- SUB_LESS
-
⊢ ∀m n. 0 < n ∧ n ≤ m ⇒ m − n < m
- SUB_MOD
-
⊢ ∀m n. 0 < n ∧ n ≤ m ⇒ (m − n) MOD n = m MOD n
- ONE_LT_MULT_IMP
-
⊢ ∀p q. 1 < p ∧ 0 < q ⇒ 1 < p * q
- ONE_LT_MULT
-
⊢ ∀x y. 1 < x * y ⇔ 0 < x ∧ 1 < y ∨ 0 < y ∧ 1 < x
- ONE_LT_EXP
-
⊢ ∀x y. 1 < x ** y ⇔ 1 < x ∧ 0 < y
- findq_thm
-
⊢ findq (a,m,n) = if n = 0 then a
else (let d = 2 * n in if m < d then a else findq (2 * a,m,d))
- findq_eq_0
-
⊢ ∀a m n. findq (a,m,n) = 0 ⇔ a = 0
- findq_divisor
-
⊢ n ≤ m ⇒ findq (a,m,n) * n ≤ a * m
- DIVMOD_THM
-
⊢ DIVMOD (a,m,n) = if n = 0 then (0,0) else if m < n then (a,m)
else (let q = findq (1,m,n) in DIVMOD (a + q,m − n * q,n))
- MOD_SUB
-
⊢ 0 < n ∧ n * q ≤ m ⇒ (m − n * q) MOD n = m MOD n
- DIV_SUB
-
⊢ 0 < n ∧ n * q ≤ m ⇒ (m − n * q) DIV n = m DIV n − q
- DIVMOD_CORRECT
-
⊢ ∀m n a. 0 < n ⇒ DIVMOD (a,m,n) = (a + m DIV n,m MOD n)
- DIVMOD_CALC
-
⊢ (∀m n. 0 < n ⇒ m DIV n = FST (DIVMOD (0,m,n))) ∧
∀m n. 0 < n ⇒ m MOD n = SND (DIVMOD (0,m,n))
- MODEQ_0_CONG
-
⊢ MODEQ 0 m1 m2 ⇔ m1 = m2
- MODEQ_NONZERO_MODEQUALITY
-
⊢ 0 < n ⇒ (MODEQ n m1 m2 ⇔ m1 MOD n = m2 MOD n)
- MODEQ_THM
-
⊢ MODEQ n m1 m2 ⇔ n = 0 ∧ m1 = m2 ∨ 0 < n ∧ m1 MOD n = m2 MOD n
- MODEQ_INTRO_CONG
-
⊢ 0 < n ⇒ MODEQ n e0 e1 ⇒ e0 MOD n = e1 MOD n
- MODEQ_PLUS_CONG
-
⊢ MODEQ n x0 x1 ⇒ MODEQ n y0 y1 ⇒ MODEQ n (x0 + y0) (x1 + y1)
- MODEQ_MULT_CONG
-
⊢ MODEQ n x0 x1 ⇒ MODEQ n y0 y1 ⇒ MODEQ n (x0 * y0) (x1 * y1)
- MODEQ_REFL
-
⊢ ∀x. MODEQ n x x
- MODEQ_SUC_CONG
-
⊢ MODEQ n x y ⇒ MODEQ n (SUC x) (SUC y)
- MODEQ_EXP_CONG
-
⊢ MODEQ n x y ⇒ MODEQ n (x ** e) (y ** e)
- EXP_MOD
-
⊢ 0 < n ⇒ (x MOD n) ** e MOD n = x ** e MOD n
- MODEQ_SYM
-
⊢ MODEQ n x y ⇔ MODEQ n y x
- MODEQ_TRANS
-
⊢ ∀x y z. MODEQ n x y ∧ MODEQ n y z ⇒ MODEQ n x z
- MODEQ_NUMERAL
-
⊢ (NUMERAL n ≤ NUMERAL m ⇒
MODEQ (NUMERAL (BIT1 n)) (NUMERAL (BIT1 m))
(NUMERAL (BIT1 m) MOD NUMERAL (BIT1 n))) ∧
(NUMERAL n ≤ NUMERAL m ⇒
MODEQ (NUMERAL (BIT1 n)) (NUMERAL (BIT2 m))
(NUMERAL (BIT2 m) MOD NUMERAL (BIT1 n))) ∧
(NUMERAL n ≤ NUMERAL m ⇒
MODEQ (NUMERAL (BIT2 n)) (NUMERAL (BIT2 m))
(NUMERAL (BIT2 m) MOD NUMERAL (BIT2 n))) ∧
(NUMERAL n < NUMERAL m ⇒
MODEQ (NUMERAL (BIT2 n)) (NUMERAL (BIT1 m))
(NUMERAL (BIT1 m) MOD NUMERAL (BIT2 n)))
- MODEQ_MOD
-
⊢ 0 < n ⇒ MODEQ n (x MOD n) x
- MODEQ_0
-
⊢ 0 < n ⇒ MODEQ n n 0
- num_case_eq
-
⊢ num_CASE n zc sc = v ⇔ n = 0 ∧ zc = v ∨ ∃x. n = SUC x ∧ sc x = v
- datatype_num
-
⊢ DATATYPE (num 0 SUC)