Theory "bft"

Parents     dirGraph

Signature

Constant Type
BFT :(β -> β list) -> (β -> α -> α) -> β list -> β list -> α -> α
Rel :(α -> β list) # γ # α list # δ list # ε -> num # num

Definitions

Rel_def
⊢ ∀G f seen fringe acc.
      Rel (G,f,seen,fringe,acc) =
      (CARD (Parents G DIFF LIST_TO_SET seen),LENGTH fringe)


Theorems

BFT_def
⊢ FINITE (Parents G) ⇒
  BFT G f seen [] acc = acc ∧
  BFT G f seen (h::t) acc = if MEM h seen then BFT G f seen t acc
  else BFT G f (h::seen) (t ++ G h) (f h acc)
BFT_ind
⊢ ∀P.
      (∀G f seen h t acc.
           P G f seen [] acc ∧
           ((FINITE (Parents G) ∧ ¬MEM h seen ⇒
             P G f (h::seen) (t ++ G h) (f h acc)) ∧
            (FINITE (Parents G) ∧ MEM h seen ⇒ P G f seen t acc) ⇒
            P G f seen (h::t) acc)) ⇒
      ∀v v1 v2 v3 v4. P v v1 v2 v3 v4
BFT_CONS
⊢ ∀G f seen fringe acc a b.
      FINITE (Parents G) ∧ f = CONS ∧ acc = a ++ b ⇒
      BFT G f seen fringe acc = BFT G f seen fringe a ++ b
BFT_FOLD
⊢ ∀G f seen fringe acc.
      FINITE (Parents G) ⇒
      BFT G f seen fringe acc = FOLDR f acc (BFT G CONS seen fringe [])
BFT_ALL_DISTINCT
⊢ ∀G seen fringe.
      FINITE (Parents G) ⇒ ALL_DISTINCT (BFT G CONS seen fringe [])
BFT_REACH_1
⊢ ∀G f seen fringe acc.
      FINITE (Parents G) ∧ f = CONS ⇒
      ∀x.
          MEM x (BFT G f seen fringe acc) ⇒
          x ∈ REACH_LIST G fringe ∨ MEM x acc
BFT_REACH_2
⊢ ∀G f seen fringe acc x.
      FINITE (Parents G) ∧ f = CONS ∧
      x ∈ REACH_LIST (EXCLUDE G (LIST_TO_SET seen)) fringe ∧ ¬MEM x seen ⇒
      MEM x (BFT G f seen fringe acc)
BFT_REACH_THM
⊢ ∀G fringe.
      FINITE (Parents G) ⇒
      ∀x. x ∈ REACH_LIST G fringe ⇔ MEM x (BFT G CONS [] fringe [])