Theory "bit"

Parents     logroot

Signature

Constant Type
BIT :num reln
BITS :num -> num -> num -> num
BITV :num -> num -> num
BITWISE :num -> bool reln -> num -> num -> num
BIT_MODIFY :num -> (num -> bool -> bool) -> num -> num
BIT_REVERSE :num -> num -> num
DIVMOD_2EXP :num -> num -> num # num
DIV_2EXP :num -> num -> num
LOG2 :num -> num
LOWEST_SET_BIT :num -> num
MOD_2EXP :num -> num -> num
MOD_2EXP_EQ :num -> num reln
MOD_2EXP_MAX :num reln
SBIT :bool -> num -> num
SIGN_EXTEND :num -> num -> num -> num
SLICE :num -> num -> num -> num
TIMES_2EXP :num -> num -> num

Definitions

MOD_2EXP_def
⊢ ∀x n. MOD_2EXP x n = n MOD 2 ** x
DIV_2EXP_def
⊢ ∀x n. DIV_2EXP x n = n DIV 2 ** x
TIMES_2EXP_def
⊢ ∀x n. TIMES_2EXP x n = n * 2 ** x
DIVMOD_2EXP_def
⊢ ∀x n. DIVMOD_2EXP x n = (n DIV 2 ** x,n MOD 2 ** x)
SBIT_def
⊢ ∀b n. SBIT b n = if b then 2 ** n else 0
BITS_def
⊢ ∀h l n. BITS h l n = MOD_2EXP (SUC h − l) (DIV_2EXP l n)
BITV_def
⊢ ∀n b. BITV n b = BITS b b n
BIT_def
⊢ ∀b n. BIT b n ⇔ BITS b b n = 1
SLICE_def
⊢ ∀h l n. SLICE h l n = MOD_2EXP (SUC h) n − MOD_2EXP l n
LOG2_def
⊢ LOG2 = LOG 2
LOWEST_SET_BIT_def
⊢ ∀n. LOWEST_SET_BIT n = LEAST i. BIT i n
BIT_REVERSE_def
⊢ (∀x. BIT_REVERSE 0 x = 0) ∧
  ∀n x. BIT_REVERSE (SUC n) x = BIT_REVERSE n x * 2 + SBIT (BIT n x) 0
BITWISE_def
⊢ (∀op x y. BITWISE 0 op x y = 0) ∧
  ∀n op x y.
      BITWISE (SUC n) op x y =
      BITWISE n op x y + SBIT (op (BIT n x) (BIT n y)) n
BIT_MODIFY_def
⊢ (∀f x. BIT_MODIFY 0 f x = 0) ∧
  ∀n f x. BIT_MODIFY (SUC n) f x = BIT_MODIFY n f x + SBIT (f n (BIT n x)) n
SIGN_EXTEND_def
⊢ ∀l h n.
      SIGN_EXTEND l h n =
      (let
         m = n MOD 2 ** l
       in
         if BIT (l − 1) n then 2 ** h − 2 ** l + m else m)
MOD_2EXP_EQ_def
⊢ ∀n a b. MOD_2EXP_EQ n a b ⇔ MOD_2EXP n a = MOD_2EXP n b
MOD_2EXP_MAX_def
⊢ ∀n a. MOD_2EXP_MAX n a ⇔ MOD_2EXP n a = 2 ** n − 1


Theorems

LESS_MULT_MONO2
⊢ ∀a b x y. a < x ∧ b < y ⇒ a * b < x * y
LOG2_UNIQUE
⊢ ∀n p. 2 ** p ≤ n ∧ n < 2 ** SUC p ⇒ LOG2 n = p
LOG2_TWOEXP
⊢ ∀n. LOG2 (2 ** n) = n
DIVMOD_2EXP
⊢ ∀x n. DIVMOD_2EXP x n = (DIV_2EXP x n,MOD_2EXP x n)
SUC_SUB
⊢ ∀a. SUC a − a = 1
DIV_MULT_1
⊢ ∀r n. r < n ⇒ (n + r) DIV n = 1
NOT_ZERO_ADD1
⊢ ∀m. m ≠ 0 ⇒ ∃p. m = SUC p
ZERO_LT_TWOEXP
⊢ ∀n. 0 < 2 ** n
ONE_LE_TWOEXP
⊢ ∀n. 1 ≤ 2 ** n
TWOEXP_NOT_ZERO
⊢ ∀n. 2 ** n ≠ 0
MOD_2EXP_LT
⊢ ∀n k. k MOD 2 ** n < 2 ** n
TWOEXP_DIVISION
⊢ ∀n k. k = k DIV 2 ** n * 2 ** n + k MOD 2 ** n
TWOEXP_MONO
⊢ ∀a b. a < b ⇒ 2 ** a < 2 ** b
TWOEXP_MONO2
⊢ ∀a b. a ≤ b ⇒ 2 ** a ≤ 2 ** b
EXP_SUB_LESS_EQ
⊢ ∀a b. 2 ** (a − b) ≤ 2 ** a
MOD_LEQ
⊢ ∀a b. 0 < b ⇒ a MOD b ≤ a
BITS_THM
⊢ ∀h l n. BITS h l n = (n DIV 2 ** l) MOD 2 ** (SUC h − l)
BITSLT_THM
⊢ ∀h l n. BITS h l n < 2 ** (SUC h − l)
BITSLT_THM2
⊢ ∀h l n. BITS h l n < 2 ** SUC h
BITS_THM2
⊢ ∀h l n. BITS h l n = n MOD 2 ** SUC h DIV 2 ** l
BITS_LEQ
⊢ ∀h l n. BITS h l n ≤ n
BITS_COMP_THM
⊢ ∀h1 l1 h2 l2 n.
      h2 + l1 ≤ h1 ⇒ BITS h2 l2 (BITS h1 l1 n) = BITS (h2 + l1) (l2 + l1) n
BITS_DIV_THM
⊢ ∀h l x n. BITS h l x DIV 2 ** n = BITS h (l + n) x
BITS_LT_HIGH
⊢ ∀h l n. n < 2 ** SUC h ⇒ BITS h l n = n DIV 2 ** l
BITS_ZERO
⊢ ∀h l n. h < l ⇒ BITS h l n = 0
BITS_ZERO2
⊢ ∀h l. BITS h l 0 = 0
BITS_ZERO3
⊢ ∀h n. BITS h 0 n = n MOD 2 ** SUC h
BITS_ZERO4
⊢ ∀h l a. l ≤ h ⇒ BITS h l (a * 2 ** l) = BITS (h − l) 0 a
BITS_ZEROL
⊢ ∀h a. a < 2 ** SUC h ⇒ BITS h 0 a = a
BITS_LOG2_ZERO_ID
⊢ ∀n. 0 < n ⇒ BITS (LOG2 n) 0 n = n
BITS_LT_LOW
⊢ ∀h l n. n < 2 ** l ⇒ BITS h l n = 0
BIT_ZERO
⊢ ∀b. ¬BIT b 0
BIT_B
⊢ ∀b. BIT b (2 ** b)
BIT_TWO_POW
⊢ ∀n m. BIT n (2 ** m) ⇔ m = n
BIT_B_NEQ
⊢ ∀a b. a ≠ b ⇒ ¬BIT a (2 ** b)
BITS_COMP_THM2
⊢ ∀h1 l1 h2 l2 n.
      BITS h2 l2 (BITS h1 l1 n) = BITS (MIN h1 (h2 + l1)) (l2 + l1) n
NOT_MOD2_LEM
⊢ ∀n. n MOD 2 ≠ 0 ⇔ n MOD 2 = 1
NOT_MOD2_LEM2
⊢ ∀n. n MOD 2 ≠ 1 ⇔ n MOD 2 = 0
ODD_MOD2_LEM
⊢ ∀n. ODD n ⇔ n MOD 2 = 1
DIV_MULT_THM
⊢ ∀x n. n DIV 2 ** x * 2 ** x = n − n MOD 2 ** x
DIV_MULT_THM2
⊢ ∀n. 2 * (n DIV 2) = n − n MOD 2
LESS_EQ_EXP_MULT
⊢ ∀a b. a ≤ b ⇒ ∃p. 2 ** b = p * 2 ** a
SLICE_THM
⊢ ∀n h l. SLICE h l n = BITS h l n * 2 ** l
SLICELT_THM
⊢ ∀h l n. SLICE h l n < 2 ** SUC h
BITS_SLICE_THM
⊢ ∀h l n. BITS h l (SLICE h l n) = BITS h l n
BITS_SLICE_THM2
⊢ ∀h h2 l n. h ≤ h2 ⇒ BITS h2 l (SLICE h l n) = BITS h l n
SLICE_ZERO_THM
⊢ ∀n h. SLICE h 0 n = BITS h 0 n
MOD_2EXP_MONO
⊢ ∀n h l. l ≤ h ⇒ n MOD 2 ** l ≤ n MOD 2 ** SUC h
SLICE_COMP_THM
⊢ ∀h m l n. SUC m ≤ h ∧ l ≤ m ⇒ SLICE h (SUC m) n + SLICE m l n = SLICE h l n
SLICE_COMP_RWT
⊢ ∀h m' m l n.
      l ≤ m ∧ m' = m + 1 ∧ m < h ⇒ SLICE h m' n + SLICE m l n = SLICE h l n
SLICE_ZERO
⊢ ∀h l n. h < l ⇒ SLICE h l n = 0
SLICE_ZERO2
⊢ ∀l h. SLICE h l 0 = 0
BITS_SUM
⊢ ∀h l a b. b < 2 ** l ⇒ BITS h l (a * 2 ** l + b) = BITS h l (a * 2 ** l)
BITS_SUM2
⊢ ∀h l a b. BITS h l (a * 2 ** SUC h + b) = BITS h l b
SLICE_COMP_THM2
⊢ ∀h l x y n. h ≤ x ∧ y ≤ l ⇒ SLICE h l (SLICE x y n) = SLICE h l n
BITS_SUM3
⊢ ∀h a b. BITS h 0 (BITS h 0 a + BITS h 0 b) = BITS h 0 (a + b)
BITS_MUL
⊢ ∀h a b. BITS h 0 (BITS h 0 a * BITS h 0 b) = BITS h 0 (a * b)
BIT_COMP_THM3
⊢ ∀h m l n.
      SUC m ≤ h ∧ l ≤ m ⇒
      BITS h (SUC m) n * 2 ** (SUC m − l) + BITS m l n = BITS h l n
NOT_BIT
⊢ ∀n a. ¬BIT n a ⇔ BITS n n a = 0
NOT_BITS
⊢ ∀n a. BITS n n a ≠ 0 ⇔ BITS n n a = 1
NOT_BITS2
⊢ ∀n a. BITS n n a ≠ 1 ⇔ BITS n n a = 0
BIT_SLICE
⊢ ∀n a b. (BIT n a ⇔ BIT n b) ⇔ SLICE n n a = SLICE n n b
BIT_SLICE_LEM
⊢ ∀y x n. SBIT (BIT x n) (x + y) = SLICE x x n * 2 ** y
BIT_SLICE_THM
⊢ ∀x n. SBIT (BIT x n) x = SLICE x x n
BIT_SLICE_THM2
⊢ ∀b n. BIT b n ⇔ SLICE b b n = 2 ** b
BIT_SLICE_THM3
⊢ ∀b n. ¬BIT b n ⇔ SLICE b b n = 0
BIT_SLICE_THM4
⊢ ∀b h l n. BIT b (SLICE h l n) ⇔ l ≤ b ∧ b ≤ h ∧ BIT b n
SBIT_DIV
⊢ ∀b m n. n < m ⇒ SBIT b (m − n) = SBIT b m DIV 2 ** n
BITS_SUC
⊢ ∀h l n.
      l ≤ SUC h ⇒
      SBIT (BIT (SUC h) n) (SUC h − l) + BITS h l n = BITS (SUC h) l n
BITS_SUC_THM
⊢ ∀h l n.
      BITS (SUC h) l n = if SUC h < l then 0
      else SBIT (BIT (SUC h) n) (SUC h − l) + BITS h l n
BIT_BITS_THM
⊢ ∀h l a b.
      (∀x. l ≤ x ∧ x ≤ h ⇒ (BIT x a ⇔ BIT x b)) ⇔ BITS h l a = BITS h l b
BITS_ZERO5
⊢ ∀n m. (∀i. i ≤ n ⇒ ¬BIT i m) ⇒ BITS n 0 m = 0
BIT0_ODD
⊢ BIT 0 = ODD
BITV_THM
⊢ ∀b n. BITV n b = SBIT (BIT b n) 0
ADD_BIT0
⊢ ∀m n. BIT 0 (m + n) ⇔ (BIT 0 m ⇎ BIT 0 n)
ADD_BITS_SUC
⊢ ∀n a b.
      BITS (SUC n) (SUC n) (a + b) =
      (BITS (SUC n) (SUC n) a + BITS (SUC n) (SUC n) b +
       BITS (SUC n) (SUC n) (BITS n 0 a + BITS n 0 b)) MOD 2
ADD_BIT_SUC
⊢ ∀n a b.
      BIT (SUC n) (a + b) ⇔
      if BIT (SUC n) (BITS n 0 a + BITS n 0 b) then
        BIT (SUC n) a ⇔ BIT (SUC n) b else BIT (SUC n) a ⇎ BIT (SUC n) b
BITWISE_LT_2EXP
⊢ ∀n op a b. BITWISE n op a b < 2 ** n
BITWISE_THM
⊢ ∀x n op a b. x < n ⇒ (BIT x (BITWISE n op a b) ⇔ op (BIT x a) (BIT x b))
BITWISE_COR
⊢ ∀x n op a b.
      x < n ⇒ op (BIT x a) (BIT x b) ⇒ (BITWISE n op a b DIV 2 ** x) MOD 2 = 1
BITWISE_NOT_COR
⊢ ∀x n op a b.
      x < n ⇒
      ¬op (BIT x a) (BIT x b) ⇒
      (BITWISE n op a b DIV 2 ** x) MOD 2 = 0
BITWISE_BITS
⊢ ∀wl op a b.
      BITWISE (SUC wl) op (BITS wl 0 a) (BITS wl 0 b) =
      BITWISE (SUC wl) op a b
NOT_BIT_GT_TWOEXP
⊢ ∀i n. n < 2 ** i ⇒ ¬BIT i n
BIT_IMP_GE_TWOEXP
⊢ ∀i n. BIT i n ⇒ 2 ** i ≤ n
BITWISE_ONE_COMP_LEM
⊢ ∀n a b. BITWISE (SUC n) (λx y. ¬x) a b = 2 ** SUC n − 1 − BITS n 0 a
BIT_COMPLEMENT
⊢ ∀n i a.
      BIT i (2 ** n − a MOD 2 ** n) ⇔
      a MOD 2 ** n = 0 ∧ i = n ∨
      a MOD 2 ** n ≠ 0 ∧ i < n ∧ ¬BIT i (a MOD 2 ** n − 1)
BIT_OF_BITS_THM
⊢ ∀n h l a. l + n ≤ h ⇒ (BIT n (BITS h l a) ⇔ BIT (l + n) a)
BIT_SHIFT_THM
⊢ ∀n a s. BIT (n + s) (a * 2 ** s) ⇔ BIT n a
BIT_SHIFT_THM2
⊢ ∀n a s. s ≤ n ⇒ (BIT n (a * 2 ** s) ⇔ BIT (n − s) a)
BIT_SHIFT_THM3
⊢ ∀n a s. n < s ⇒ ¬BIT n (a * 2 ** s)
BIT_OF_BITS_THM2
⊢ ∀h l x n. h < l + x ⇒ ¬BIT x (BITS h l n)
BIT_DIV2
⊢ ∀n i. BIT n (i DIV 2) ⇔ BIT (SUC n) i
BIT_SHIFT_THM4
⊢ ∀n i a. BIT i (a DIV 2 ** n) ⇔ BIT (i + n) a
DIV_LT
⊢ ∀n m a. n < m ∧ a < 2 ** m ⇒ a DIV 2 ** n < 2 ** m
MOD_ZERO_GT
⊢ ∀n a. a ≠ 0 ∧ a MOD 2 ** n = 0 ⇒ 2 ** n ≤ a
DIV_GT0
⊢ ∀a b. b ≤ a ∧ 0 < b ⇒ 0 < a DIV b
DIV_SUB1
⊢ ∀a b. 2 ** b ≤ a ∧ a MOD 2 ** b = 0 ⇒ a DIV 2 ** b − 1 = (a − 1) DIV 2 ** b
BIT_EXP_SUB1
⊢ ∀b n. BIT b (2 ** n − 1) ⇔ b < n
BIT_SHIFT_THM5
⊢ ∀n m i a.
      i + n < m ∧ a < 2 ** m ⇒
      (BIT i
         (2 ** m −
          (a DIV 2 ** n + if a MOD 2 ** n = 0 then 0 else 1) MOD 2 ** m) ⇔
       BIT (i + n) (2 ** m − a MOD 2 ** m))
SBIT_MULT
⊢ ∀b m n. SBIT b n * 2 ** m = SBIT b (n + m)
BITWISE_EVAL
⊢ ∀n op a b.
      BITWISE (SUC n) op a b =
      2 * BITWISE n op (a DIV 2) (b DIV 2) + SBIT (op (ODD a) (ODD b)) 0
MOD_PLUS_RIGHT
⊢ ∀n. 0 < n ⇒ ∀j k. (j + k MOD n) MOD n = (j + k) MOD n
MOD_PLUS_LEFT
⊢ ∀n. 0 < n ⇒ ∀j k. (k MOD n + j) MOD n = (k + j) MOD n
MOD_PLUS_1
⊢ ∀n. 0 < n ⇒ ∀x. (x + 1) MOD n = 0 ⇔ x MOD n + 1 = n
MOD_ADD_1
⊢ ∀n. 0 < n ⇒ ∀x. (x + 1) MOD n ≠ 0 ⇒ (x + 1) MOD n = x MOD n + 1
BIT_REVERSE_THM
⊢ ∀x n a. x < n ⇒ (BIT x (BIT_REVERSE n a) ⇔ BIT (n − 1 − x) a)
LOG2_LE_MONO
⊢ ∀x y. 0 < x ⇒ x ≤ y ⇒ LOG2 x ≤ LOG2 y
TWOEXP_LE_IMP_LE_LOG2
⊢ (∀x y. 2 ** x ≤ y ⇒ x ≤ LOG2 y) ∧ ∀y x. 0 < x ⇒ x ≤ 2 ** y ⇒ LOG2 x ≤ y
NOT_BIT_GT_LOG2
⊢ ∀i n. LOG2 n < i ⇒ ¬BIT i n
NOT_BIT_GT_BITWISE
⊢ ∀i n op a b. n ≤ i ⇒ ¬BIT i (BITWISE n op a b)
LT_TWOEXP
⊢ ∀x n. x < 2 ** n ⇔ x = 0 ∨ LOG2 x < n
BIT_MODIFY_THM
⊢ ∀x n f a. x < n ⇒ (BIT x (BIT_MODIFY n f a) ⇔ f x (BIT x a))
BIT_SIGN_EXTEND
⊢ ∀l h n i.
      l ≠ 0 ⇒
      (BIT i (SIGN_EXTEND l h n) ⇔ if l ≤ h ⇒ i < l then BIT i (n MOD 2 ** l)
       else i < h ∧ BIT (l − 1) n)
BIT_LOG2
⊢ ∀n. n ≠ 0 ⇒ BIT (LOG2 n) n
EXISTS_BIT_IN_RANGE
⊢ ∀a b n. n ≠ 0 ∧ 2 ** a ≤ n ∧ n < 2 ** b ⇒ ∃i. a ≤ i ∧ i < b ∧ BIT i n
EXISTS_BIT_LT
⊢ ∀b n. n ≠ 0 ∧ n < 2 ** b ⇒ ∃i. i < b ∧ BIT i n
LEAST_THM
⊢ ∀n P. (∀m. m < n ⇒ ¬P m) ∧ P n ⇒ $LEAST P = n