Theory "bitstring"

Parents     words

Signature

Constant Type
add :bitstring -> bitstring -> bitstring
band :bitstring -> bitstring -> bitstring
bitify :num list -> bitstring -> num list
bitwise :bool reln -> bitstring -> bitstring -> bitstring
bnand :bitstring -> bitstring -> bitstring
bnor :bitstring -> bitstring -> bitstring
bnot :bitstring -> bitstring
boolify :bitstring -> num list -> bitstring
bor :bitstring -> bitstring -> bitstring
bxnor :bitstring -> bitstring -> bitstring
bxor :bitstring -> bitstring -> bitstring
extend :bool -> num -> bitstring -> bitstring
field :num -> num -> bitstring -> bitstring
field_insert :num -> num -> bitstring -> bitstring -> bitstring
fixwidth :num -> bitstring -> bitstring
modify :(num -> bool -> bool) -> bitstring -> bitstring
n2v :num -> bitstring
replicate :bitstring -> num -> bitstring
rev_count_list :num -> num list
rotate :bitstring -> num -> bitstring
s2v :string -> bitstring
shiftl :bitstring -> num -> bitstring
shiftr :bitstring -> num -> bitstring
sign_extend :num -> α list -> α list
testbit :num -> bitstring -> bool
v2n :bitstring -> num
v2s :bitstring -> string
v2w :bitstring -> α word
w2v :α word -> bitstring
zero_extend :num -> bitstring -> bitstring

Definitions

extend_def
⊢ (∀v0 l. extend v0 0 l = l) ∧ ∀c n l. extend c (SUC n) l = extend c n (c::l)
boolify_def
⊢ (∀a. boolify a [] = a) ∧ ∀a n l. boolify a (n::l) = boolify ((n ≠ 0)::a) l
n2v_def
⊢ ∀n. n2v n = boolify [] (num_to_bin_list n)
v2n_def
⊢ ∀l. v2n l = num_from_bin_list (bitify [] l)
s2v_def
⊢ s2v = MAP (λc. c = #"1" ∨ c = #"T")
v2s_def
⊢ v2s = MAP (λb. if b then #"1" else #"0")
zero_extend_def
⊢ ∀n v. zero_extend n v = PAD_LEFT F n v
sign_extend_def
⊢ ∀n v. sign_extend n v = PAD_LEFT (HD v) n v
fixwidth_def
⊢ ∀n v.
      fixwidth n v =
      (let l = LENGTH v in if l < n then zero_extend n v else DROP (l − n) v)
shiftl_def
⊢ ∀v m. shiftl v m = PAD_RIGHT F (LENGTH v + m) v
shiftr_def
⊢ ∀v m. shiftr v m = TAKE (LENGTH v − m) v
field_def
⊢ ∀h l v. field h l v = fixwidth (SUC h − l) (shiftr v l)
rotate_def
⊢ ∀v m.
      rotate v m =
      (let
         l = LENGTH v ;
         x = m MOD l
       in
         if l = 0 ∨ x = 0 then v else field (x − 1) 0 v ++ field (l − 1) x v)
testbit_def
⊢ ∀b v. testbit b v ⇔ field b b v = [T]
w2v_def
⊢ ∀w. w2v w = GENLIST (λi. w ' (dimindex (:α) − 1 − i)) (dimindex (:α))
v2w_def
⊢ ∀v. v2w v = FCP i. testbit i v
rev_count_list_def
⊢ ∀n. rev_count_list n = GENLIST (λi. n − 1 − i) n
modify_def
⊢ ∀f v. modify f v = MAP (UNCURRY f) (ZIP (rev_count_list (LENGTH v),v))
field_insert_def
⊢ ∀h l s.
      field_insert h l s =
      modify (λi. COND (l ≤ i ∧ i ≤ h) (testbit (i − l) s))
add_def
⊢ ∀a b.
      add a b =
      (let
         m = MAX (LENGTH a) (LENGTH b)
       in
         zero_extend m (n2v (v2n a + v2n b)))
bitwise_def
⊢ ∀f v1 v2.
      bitwise f v1 v2 =
      (let
         m = MAX (LENGTH v1) (LENGTH v2)
       in
         MAP (UNCURRY f) (ZIP (fixwidth m v1,fixwidth m v2)))
bnot_def
⊢ bnot = MAP $~
bor_def
⊢ bor = bitwise $\/
band_def
⊢ band = bitwise $/\
bxor_def
⊢ bxor = bitwise (λx y. x ⇎ y)
bnor_def
⊢ bnor = bitwise (λx y. ¬(x ∨ y))
bxnor_def
⊢ bxnor = bitwise $<=>
bnand_def
⊢ bnand = bitwise (λx y. ¬(x ∧ y))
replicate_def
⊢ ∀v n. replicate v n = FLAT (GENLIST (K v) n)


Theorems

extend_def_compute
⊢ (∀v0 l. extend v0 0 l = l) ∧
  (∀c n l.
       extend c (NUMERAL (BIT1 n)) l = extend c (NUMERAL (BIT1 n) − 1) (c::l)) ∧
  ∀c n l. extend c (NUMERAL (BIT2 n)) l = extend c (NUMERAL (BIT1 n)) (c::l)
bitify_ind
⊢ ∀P.
      (∀a. P a []) ∧ (∀a l. P (0::a) l ⇒ P a (F::l)) ∧
      (∀a l. P (1::a) l ⇒ P a (T::l)) ⇒
      ∀v v1. P v v1
bitify_def
⊢ (∀a. bitify a [] = a) ∧ (∀l a. bitify a (F::l) = bitify (0::a) l) ∧
  ∀l a. bitify a (T::l) = bitify (1::a) l
extend_cons
⊢ ∀n c l. extend c (SUC n) l = c::extend c n l
pad_left_extend
⊢ ∀n l c. PAD_LEFT c n l = extend c (n − LENGTH l) l
extend
⊢ (∀n v. zero_extend n v = extend F (n − LENGTH v) v) ∧
  ∀n v. sign_extend n v = extend (HD v) (n − LENGTH v) v
fixwidth
⊢ ∀n v.
      fixwidth n v =
      (let
         l = LENGTH v
       in
         if l < n then extend F (n − l) v else DROP (l − n) v)
fixwidth_id
⊢ ∀w. fixwidth (LENGTH w) w = w
fixwidth_id_imp
⊢ ∀n w. n = LENGTH w ⇒ fixwidth n w = w
boolify_reverse_map
⊢ ∀v a. boolify a v = REVERSE (MAP (λn. n ≠ 0) v) ++ a
bitify_reverse_map
⊢ ∀v a. bitify a v = REVERSE (MAP (λb. if b then 1 else 0) v) ++ a
every_bit_bitify
⊢ ∀v. EVERY ($> 2) (bitify [] v)
length_pad_left
⊢ ∀x n a. LENGTH (PAD_LEFT x n a) = if LENGTH a < n then n else LENGTH a
length_pad_right
⊢ ∀x n a. LENGTH (PAD_RIGHT x n a) = if LENGTH a < n then n else LENGTH a
length_zero_extend
⊢ ∀n v. LENGTH v < n ⇒ LENGTH (zero_extend n v) = n
length_sign_extend
⊢ ∀n v. LENGTH v < n ⇒ LENGTH (sign_extend n v) = n
length_fixwidth
⊢ ∀n v. LENGTH (fixwidth n v) = n
length_field
⊢ ∀h l v. LENGTH (field h l v) = SUC h − l
length_bitify
⊢ ∀v l. LENGTH (bitify l v) = LENGTH l + LENGTH v
length_bitify_null
⊢ ∀v l. LENGTH (bitify [] v) = LENGTH v
length_shiftr
⊢ ∀v n. LENGTH (shiftr v n) = LENGTH v − n
length_rev_count_list
⊢ ∀n. LENGTH (rev_count_list n) = n
length_w2v
⊢ ∀w. LENGTH (w2v w) = dimindex (:α)
length_rotate
⊢ ∀v n. LENGTH (rotate v n) = LENGTH v
el_rev_count_list
⊢ ∀n i. i < n ⇒ EL i (rev_count_list n) = n − 1 − i
el_zero_extend
⊢ ∀n i v.
      EL i (zero_extend n v) ⇔ n − LENGTH v ≤ i ∧ EL (i − (n − LENGTH v)) v
el_sign_extend
⊢ ∀n i v.
      EL i (sign_extend n v) = if i < n − LENGTH v then EL 0 v
      else EL (i − (n − LENGTH v)) v
el_fixwidth
⊢ ∀i n w.
      i < n ⇒
      (EL i (fixwidth n w) ⇔
       if LENGTH w < n then n − LENGTH w ≤ i ∧ EL (i − (n − LENGTH w)) w
       else EL (i + (LENGTH w − n)) w)
el_field
⊢ ∀v h l i.
      i < SUC h − l ⇒
      (EL i (field h l v) ⇔ SUC h ≤ i + LENGTH v ∧ EL (i + LENGTH v − SUC h) v)
el_w2v
⊢ ∀w n. n < dimindex (:α) ⇒ (EL n (w2v w) ⇔ w ' (dimindex (:α) − 1 − n))
el_shiftr
⊢ ∀i v n d.
      n < d ∧ i < d − n ∧ 0 < d ⇒
      (EL i (shiftr (fixwidth d v) n) ⇔
       d ≤ i + LENGTH v ∧ EL (i + LENGTH v − d) v)
shiftr_0
⊢ ∀v. shiftr v 0 = v
field_fixwidth
⊢ ∀h v. field h 0 v = fixwidth (SUC h) v
testbit
⊢ ∀b v. testbit b v ⇔ (let n = LENGTH v in b < n ∧ EL (n − 1 − b) v)
testbit_geq_len
⊢ ∀v i. LENGTH v ≤ i ⇒ ¬testbit i v
testbit_el
⊢ ∀v i. i < LENGTH v ⇒ (testbit i v ⇔ EL (LENGTH v − 1 − i) v)
bit_v2w
⊢ ∀n v. word_bit n (v2w v) ⇔ n < dimindex (:α) ∧ testbit n v
word_index_v2w
⊢ ∀v i.
      v2w v ' i ⇔ if i < dimindex (:α) then testbit i v
      else FAIL $' index too large (v2w v) i
testbit_w2v
⊢ ∀n w. testbit n (w2v w) ⇔ word_bit n w
w2v_v2w
⊢ ∀v. w2v (v2w v) = fixwidth (dimindex (:α)) v
v2w_w2v
⊢ ∀w. v2w (w2v w) = w
v2w_fixwidth
⊢ ∀v. v2w (fixwidth (dimindex (:α)) v) = v2w v
fixwidth_fixwidth
⊢ ∀n v. fixwidth n (fixwidth n v) = fixwidth n v
bitstring_nchotomy
⊢ ∀w. ∃v. w = v2w v
ranged_bitstring_nchotomy
⊢ ∀w. ∃v. w = v2w v ∧ Abbrev (LENGTH v = dimindex (:α))
fixwidth_eq
⊢ ∀n v w.
      fixwidth n v = fixwidth n w ⇔ ∀i. i < n ⇒ (testbit i v ⇔ testbit i w)
v2w_11
⊢ ∀v w.
      v2w v = v2w w ⇔ fixwidth (dimindex (:α)) v = fixwidth (dimindex (:α)) w
field_concat_right
⊢ ∀h a b. LENGTH b = SUC h ⇒ field h 0 (a ++ b) = b
field_concat_left
⊢ ∀h l a b.
      l ≤ h ∧ LENGTH b ≤ l ⇒
      field h l (a ++ b) = field (h − LENGTH b) (l − LENGTH b) a
field_id_imp
⊢ ∀n v. SUC n = LENGTH v ⇒ field n 0 v = v
shiftl_replicate_F
⊢ ∀v n. shiftl v n = v ++ replicate [F] n
word_lsb_v2w
⊢ ∀v. word_lsb (v2w v) ⇔ v ≠ [] ∧ LAST v
word_msb_v2w
⊢ ∀v. word_msb (v2w v) ⇔ testbit (dimindex (:α) − 1) v
w2w_v2w
⊢ ∀v.
      w2w (v2w v) =
      v2w
        (fixwidth
           (if dimindex (:β) < dimindex (:α) then dimindex (:β)
            else dimindex (:α)) v)
sw2sw_v2w
⊢ ∀v.
      sw2sw (v2w v) =
      if dimindex (:α) < dimindex (:β) then
        v2w (sign_extend (dimindex (:β)) (fixwidth (dimindex (:α)) v))
      else v2w (fixwidth (dimindex (:β)) v)
n2w_v2n
⊢ ∀v. n2w (v2n v) = v2w v
v2n_n2v
⊢ ∀n. v2n (n2v n) = n
v2w_n2v
⊢ ∀n. v2w (n2v n) = n2w n
w2n_v2w
⊢ ∀v. w2n (v2w v) = MOD_2EXP (dimindex (:α)) (v2n v)
v2n_lt
⊢ ∀v. v2n v < 2 ** LENGTH v
word_and_v2w
⊢ ∀v w. (v2w v && v2w w) = v2w (band v w)
word_or_v2w
⊢ ∀v w. (v2w v ‖ v2w w) = v2w (bor v w)
word_xor_v2w
⊢ ∀v w. (v2w v ⊕ v2w w) = v2w (bxor v w)
word_nand_v2w
⊢ ∀v w.
      (v2w v ~&& v2w w) =
      v2w (bnand (fixwidth (dimindex (:α)) v) (fixwidth (dimindex (:α)) w))
word_nor_v2w
⊢ ∀v w.
      (v2w v ~|| v2w w) =
      v2w (bnor (fixwidth (dimindex (:α)) v) (fixwidth (dimindex (:α)) w))
word_xnor_v2w
⊢ ∀v w.
      (v2w v ~?? v2w w) =
      v2w (bxnor (fixwidth (dimindex (:α)) v) (fixwidth (dimindex (:α)) w))
word_1comp_v2w
⊢ ∀v. ¬v2w v = v2w (bnot (fixwidth (dimindex (:α)) v))
word_lsl_v2w
⊢ ∀n v. v2w v ≪ n = v2w (shiftl v n)
word_lsr_v2w
⊢ ∀n v. v2w v ⋙ n = v2w (shiftr (fixwidth (dimindex (:α)) v) n)
word_modify_v2w
⊢ ∀f v. word_modify f (v2w v) = v2w (modify f (fixwidth (dimindex (:α)) v))
word_bits_v2w
⊢ ∀h l v. (h -- l) (v2w v) = v2w (field h l (fixwidth (dimindex (:α)) v))
word_extract_v2w
⊢ ∀h l v. (h >< l) (v2w v) = w2w ((h -- l) (v2w v))
word_slice_v2w
⊢ ∀h l v.
      (h '' l) (v2w v) =
      v2w (shiftl (field h l (fixwidth (dimindex (:α)) v)) l)
word_asr_v2w
⊢ ∀n v.
      v2w v ≫ n =
      (let
         l = fixwidth (dimindex (:α)) v
       in
         v2w
           (sign_extend (dimindex (:α))
              (if dimindex (:α) ≤ n then [HD l] else shiftr l n)))
word_ror_v2w
⊢ ∀n v. v2w v ⇄ n = v2w (rotate (fixwidth (dimindex (:α)) v) n)
word_reverse_v2w
⊢ ∀v. word_reverse (v2w v) = v2w (REVERSE (fixwidth (dimindex (:α)) v))
word_join_v2w
⊢ ∀v1 v2.
      FINITE 𝕌(:α) ∧ FINITE 𝕌(:β) ⇒
      word_join (v2w v1) (v2w v2) = v2w (v1 ++ fixwidth (dimindex (:β)) v2)
word_concat_v2w
⊢ ∀v1 v2.
      FINITE 𝕌(:α) ∧ FINITE 𝕌(:β) ⇒
      v2w v1 @@ v2w v2 =
      v2w
        (fixwidth (MIN (dimindex (:γ)) (dimindex (:α) + dimindex (:β)))
           (v1 ++ fixwidth (dimindex (:β)) v2))
word_join_v2w_rwt
⊢ ∀v1 v2.
      word_join (v2w v1) (v2w v2) =
      if FINITE 𝕌(:α) ∧ FINITE 𝕌(:β) then
        v2w (v1 ++ fixwidth (dimindex (:β)) v2)
      else FAIL word_join bad domain (v2w v1) (v2w v2)
word_concat_v2w_rwt
⊢ ∀v1 v2.
      v2w v1 @@ v2w v2 =
      if FINITE 𝕌(:α) ∧ FINITE 𝕌(:β) then
        v2w
          (fixwidth (MIN (dimindex (:γ)) (dimindex (:α) + dimindex (:β)))
             (v1 ++ fixwidth (dimindex (:β)) v2))
      else FAIL $@@ bad domain (v2w v1) (v2w v2)
word_reduce_v2w
⊢ ∀f v.
      word_reduce f (v2w v) =
      (let l = fixwidth (dimindex (:α)) v in v2w [FOLDL f (HD l) (TL l)])
reduce_and_v2w
⊢ ∀v. reduce_and (v2w v) = word_reduce $/\ (v2w v)
reduce_or_v2w
⊢ ∀v. reduce_or (v2w v) = word_reduce $\/ (v2w v)
extract_v2w
⊢ ∀h l v.
      LENGTH v ≤ dimindex (:α) ∧ dimindex (:β) = SUC h − l ∧
      dimindex (:β) ≤ dimindex (:α) ⇒
      (h >< l) (v2w v) = v2w (field h l v)
word_bit_last_shiftr
⊢ ∀i v.
      i < dimindex (:α) ⇒
      (word_bit i (v2w v) ⇔ (let l = shiftr v i in ¬NULL l ∧ LAST l))
ops_to_v2w
⊢ (∀v n. (v2w v ‖ n2w n) = (v2w v ‖ v2w (n2v n))) ∧
  (∀v n. (n2w n ‖ v2w v) = (v2w (n2v n) ‖ v2w v)) ∧
  (∀v n. (v2w v && n2w n) = (v2w v && v2w (n2v n))) ∧
  (∀v n. (n2w n && v2w v) = (v2w (n2v n) && v2w v)) ∧
  (∀v n. (v2w v ⊕ n2w n) = (v2w v ⊕ v2w (n2v n))) ∧
  (∀v n. (n2w n ⊕ v2w v) = (v2w (n2v n) ⊕ v2w v)) ∧
  (∀v n. (v2w v ~|| n2w n) = (v2w v ~|| v2w (n2v n))) ∧
  (∀v n. (n2w n ~|| v2w v) = (v2w (n2v n) ~|| v2w v)) ∧
  (∀v n. (v2w v ~&& n2w n) = (v2w v ~&& v2w (n2v n))) ∧
  (∀v n. (n2w n ~&& v2w v) = (v2w (n2v n) ~&& v2w v)) ∧
  (∀v n. (v2w v ~?? n2w n) = (v2w v ~?? v2w (n2v n))) ∧
  (∀v n. (n2w n ~?? v2w v) = (v2w (n2v n) ~?? v2w v)) ∧
  (∀v n. v2w v @@ n2w n = v2w v @@ v2w (n2v n)) ∧
  (∀v n. n2w n @@ v2w v = v2w (n2v n) @@ v2w v) ∧
  (∀v n. word_join (v2w v) (n2w n) = word_join (v2w v) (v2w (n2v n))) ∧
  ∀v n. word_join (n2w n) (v2w v) = word_join (v2w (n2v n)) (v2w v)
ops_to_n2w
⊢ (∀v. -v2w v = -n2w (v2n v)) ∧
  (∀v. word_log2 (v2w v) = word_log2 (n2w (v2n v))) ∧
  (∀v n. v2w v = n2w n ⇔ n2w (v2n v) = n2w n) ∧
  (∀v n. n2w n = v2w v ⇔ n2w n = n2w (v2n v)) ∧
  (∀v w. v2w v + w = n2w (v2n v) + w) ∧ (∀v w. w + v2w v = w + n2w (v2n v)) ∧
  (∀v w. v2w v − w = n2w (v2n v) − w) ∧ (∀v w. w − v2w v = w − n2w (v2n v)) ∧
  (∀v w. v2w v * w = n2w (v2n v) * w) ∧ (∀v w. w * v2w v = w * n2w (v2n v)) ∧
  (∀v w. v2w v / w = n2w (v2n v) / w) ∧ (∀v w. w / v2w v = w / n2w (v2n v)) ∧
  (∀v w. v2w v // w = n2w (v2n v) // w) ∧
  (∀v w. w // v2w v = w // n2w (v2n v)) ∧
  (∀v w. word_mod (v2w v) w = word_mod (n2w (v2n v)) w) ∧
  (∀v w. word_mod w (v2w v) = word_mod w (n2w (v2n v))) ∧
  (∀v w. v2w v < w ⇔ n2w (v2n v) < w) ∧ (∀v w. w < v2w v ⇔ w < n2w (v2n v)) ∧
  (∀v w. v2w v > w ⇔ n2w (v2n v) > w) ∧ (∀v w. w > v2w v ⇔ w > n2w (v2n v)) ∧
  (∀v w. v2w v ≤ w ⇔ n2w (v2n v) ≤ w) ∧ (∀v w. w ≤ v2w v ⇔ w ≤ n2w (v2n v)) ∧
  (∀v w. v2w v ≥ w ⇔ n2w (v2n v) ≥ w) ∧ (∀v w. w ≥ v2w v ⇔ w ≥ n2w (v2n v)) ∧
  (∀v w. v2w v <₊ w ⇔ n2w (v2n v) <₊ w) ∧
  (∀v w. w <₊ v2w v ⇔ w <₊ n2w (v2n v)) ∧
  (∀v w. v2w v >₊ w ⇔ n2w (v2n v) >₊ w) ∧
  (∀v w. w >₊ v2w v ⇔ w >₊ n2w (v2n v)) ∧
  (∀v w. v2w v ≤₊ w ⇔ n2w (v2n v) ≤₊ w) ∧
  (∀v w. w ≤₊ v2w v ⇔ w ≤₊ n2w (v2n v)) ∧
  (∀v w. v2w v ≥₊ w ⇔ n2w (v2n v) ≥₊ w) ∧ ∀v w. w ≥₊ v2w v ⇔ w ≥₊ n2w (v2n v)