- o_THM
-
⊢ ∀f g x. (f ∘ g) x = f (g x)
- o_ASSOC
-
⊢ ∀f g h. f ∘ g ∘ h = (f ∘ g) ∘ h
- o_ABS_L
-
⊢ (λx. f x) ∘ g = (λx. f (g x))
- o_ABS_R
-
⊢ f ∘ (λx. g x) = (λx. f (g x))
- K_THM
-
⊢ ∀x y. K x y = x
- S_THM
-
⊢ ∀f g x. S f g x = f x (g x)
- S_ABS_L
-
⊢ S (λx. f x) g = (λx. f x (g x))
- S_ABS_R
-
⊢ S f (λx. g x) = (λx. f x (g x))
- C_THM
-
⊢ ∀f x y. combin$C f x y = f y x
- C_ABS_L
-
⊢ combin$C (λx. f x) y = (λx. f x y)
- W_THM
-
⊢ ∀f x. W f x = f x x
- I_THM
-
⊢ ∀x. I x = x
- I_o_ID
-
⊢ ∀f. I ∘ f = f ∧ f ∘ I = f
- K_o_THM
-
⊢ (∀f v. K v ∘ f = K v) ∧ ∀f v. f ∘ K v = K (f v)
- UPDATE_APPLY
-
⊢ (∀a x f. (a =+ x) f a = x) ∧ ∀a b x f. a ≠ b ⇒ (a =+ x) f b = f b
- APPLY_UPDATE_THM
-
⊢ ∀f a b c. (a =+ b) f c = if a = c then b else f c
- UPDATE_COMMUTES
-
⊢ ∀f a b c d. a ≠ b ⇒ (a =+ c) ((b =+ d) f) = (b =+ d) ((a =+ c) f)
- UPDATE_EQ
-
⊢ ∀f a b c. (a =+ c) ((a =+ b) f) = (a =+ c) f
- UPDATE_APPLY_ID
-
⊢ ∀f a b. f a = b ⇔ (a =+ b) f = f
- UPDATE_APPLY_IMP_ID
-
⊢ ∀f b a. f a = b ⇒ (a =+ b) f = f
- APPLY_UPDATE_ID
-
⊢ ∀f a. (a =+ f a) f = f
- UPD11_SAME_BASE
-
⊢ ∀f a b c d.
(a =+ c) f = (b =+ d) f ⇔
a = b ∧ c = d ∨ a ≠ b ∧ (a =+ c) f = f ∧ (b =+ d) f = f
- SAME_KEY_UPDATE_DIFFER
-
⊢ ∀f1 f2 a b c. b ≠ c ⇒ (a =+ b) f ≠ (a =+ c) f
- UPD11_SAME_KEY_AND_BASE
-
⊢ ∀f a b c. (a =+ b) f = (a =+ c) f ⇔ b = c
- UPD_SAME_KEY_UNWIND
-
⊢ ∀f1 f2 a b c.
(a =+ b) f1 = (a =+ c) f2 ⇒ b = c ∧ ∀v. (a =+ v) f1 = (a =+ v) f2
- GEN_LET_RAND
-
⊢ P (LET f v) = LET (P ∘ f) v
- GEN_LET_RATOR
-
⊢ LET f v x = LET (combin$C f x) v
- LET_FORALL_ELIM
-
⊢ LET f v ⇔ $! (S ($==> ∘ Abbrev ∘ combin$C $= v) f)
- GEN_literal_case_RAND
-
⊢ P (literal_case f v) = literal_case (P ∘ f) v
- GEN_literal_case_RATOR
-
⊢ literal_case f v x = literal_case (combin$C f x) v
- literal_case_FORALL_ELIM
-
⊢ literal_case f v ⇔ $! (S ($==> ∘ Abbrev ∘ combin$C $= v) f)
- ASSOC_CONJ
-
⊢ ASSOC $/\
- ASSOC_SYM
-
⊢ ∀f. ASSOC f ⇔ ∀x y z. f (f x y) z = f x (f y z)
- ASSOC_DISJ
-
⊢ ASSOC $\/
- FCOMM_ASSOC
-
⊢ ∀f. FCOMM f f ⇔ ASSOC f
- MONOID_CONJ_T
-
⊢ MONOID $/\ T
- MONOID_DISJ_F
-
⊢ MONOID $\/ F
- FAIL_THM
-
⊢ FAIL x y = x