- good_cmp_thm
-
⊢ ∀cmp.
good_cmp cmp ⇔
(∀x. cmp x x = Equal) ∧
∀x y z.
(cmp x y = Greater ⇔ cmp y x = Less) ∧
(cmp x y = Less ∧ cmp y z = Equal ⇒ cmp x z = Less) ∧
(cmp x y = Less ∧ cmp y z = Less ⇒ cmp x z = Less)
- cmp_thms
-
⊢ (Less ≠ Equal ∧ Less ≠ Greater ∧ Equal ≠ Greater) ∧
((∀v0 v1 v2. (case Less of Less => v0 | Equal => v1 | Greater => v2) = v0) ∧
(∀v0 v1 v2. (case Equal of Less => v0 | Equal => v1 | Greater => v2) = v1) ∧
∀v0 v1 v2. (case Greater of Less => v0 | Equal => v1 | Greater => v2) = v2) ∧
(∀a. a = Less ∨ a = Equal ∨ a = Greater) ∧
∀cmp.
good_cmp cmp ⇔
(∀x. cmp x x = Equal) ∧ (∀x y. cmp x y = Equal ⇒ cmp y x = Equal) ∧
(∀x y. cmp x y = Greater ⇔ cmp y x = Less) ∧
(∀x y z. cmp x y = Equal ∧ cmp y z = Less ⇒ cmp x z = Less) ∧
(∀x y z. cmp x y = Less ∧ cmp y z = Equal ⇒ cmp x z = Less) ∧
(∀x y z. cmp x y = Equal ∧ cmp y z = Equal ⇒ cmp x z = Equal) ∧
∀x y z. cmp x y = Less ∧ cmp y z = Less ⇒ cmp x z = Less
- option_cmp_def
-
⊢ option_cmp c NONE NONE = Equal ∧ option_cmp c NONE (SOME v0) = Less ∧
option_cmp c (SOME v3) NONE = Greater ∧
option_cmp c (SOME v1) (SOME v2) = c v1 v2
- option_cmp2_ind
-
⊢ ∀P.
(∀cmp. P cmp NONE NONE) ∧ (∀cmp x. P cmp NONE (SOME x)) ∧
(∀cmp x. P cmp (SOME x) NONE) ∧ (∀cmp x y. P cmp (SOME x) (SOME y)) ⇒
∀v v1 v2. P v v1 v2
- option_cmp2_def
-
⊢ option_cmp2 cmp NONE NONE = Equal ∧
option_cmp2 cmp NONE (SOME x') = Greater ∧
option_cmp2 cmp (SOME x) NONE = Less ∧
option_cmp2 cmp (SOME x) (SOME y) = cmp x y
- pair_cmp_def
-
⊢ pair_cmp c1 c2 x y =
case c1 (FST x) (FST y) of
Less => Less
| Equal => c2 (SND x) (SND y)
| Greater => Greater
- bool_cmp_def
-
⊢ bool_cmp T T = Equal ∧ bool_cmp F F = Equal ∧ bool_cmp T F = Greater ∧
bool_cmp F T = Less
- num_cmp_def
-
⊢ ∀n1 n2.
num_cmp n1 n2 = if n1 = n2 then Equal else if n1 < n2 then Less
else Greater
- char_cmp_def
-
⊢ ∀c1 c2. char_cmp c1 c2 = num_cmp (ORD c1) (ORD c2)
- string_cmp_def
-
⊢ string_cmp = list_cmp char_cmp
- TotOrder_imp_good_cmp
-
⊢ ∀cmp. TotOrd cmp ⇒ good_cmp cmp
- TO_inv_invert
-
⊢ ∀c. TotOrd c ⇒ TO_inv c = CURRY (invert_comparison ∘ UNCURRY c)
- option_cmp2_TO_inv
-
⊢ ∀c. option_cmp2 c = TO_inv (option_cmp (TO_inv c))
- list_cmp_ListOrd
-
⊢ ∀c. TotOrd c ⇒ list_cmp c = ListOrd (TO c)
- TotOrd_list_cmp
-
⊢ ∀c. TotOrd c ⇒ TotOrd (list_cmp c)
- pair_cmp_lexTO
-
⊢ ∀R V. TotOrd R ∧ TotOrd V ⇒ pair_cmp R V = R lexTO V
- num_cmp_numOrd
-
⊢ num_cmp = numOrd
- char_cmp_charOrd
-
⊢ char_cmp = charOrd
- string_cmp_stringto
-
⊢ string_cmp = apto stringto
- option_cmp_good
-
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (option_cmp cmp)
- option_cmp2_good
-
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (option_cmp2 cmp)
- list_cmp_good
-
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (list_cmp cmp)
- pair_cmp_good
-
⊢ ∀cmp1 cmp2. good_cmp cmp1 ∧ good_cmp cmp2 ⇒ good_cmp (pair_cmp cmp1 cmp2)
- bool_cmp_good
-
⊢ good_cmp bool_cmp
- num_cmp_good
-
⊢ good_cmp num_cmp
- char_cmp_good
-
⊢ good_cmp char_cmp
- string_cmp_good
-
⊢ good_cmp string_cmp
- list_cmp_cong
-
⊢ ∀cmp l1 l2 cmp' l1' l2'.
l1 = l1' ∧ l2 = l2' ∧
(∀x x'. MEM x l1' ∧ MEM x' l2' ⇒ cmp x x' = cmp' x x') ⇒
list_cmp cmp l1 l2 = list_cmp cmp' l1' l2'
- option_cmp_cong
-
⊢ ∀cmp v1 v2 cmp' v1' v2'.
v1 = v1' ∧ v2 = v2' ∧
(∀x x'. v1' = SOME x ∧ v2' = SOME x' ⇒ cmp x x' = cmp' x x') ⇒
option_cmp cmp v1 v2 = option_cmp cmp' v1' v2'
- option_cmp2_cong
-
⊢ ∀cmp v1 v2 cmp' v1' v2'.
v1 = v1' ∧ v2 = v2' ∧
(∀x x'. v1' = SOME x ∧ v2' = SOME x' ⇒ cmp x x' = cmp' x x') ⇒
option_cmp2 cmp v1 v2 = option_cmp2 cmp' v1' v2'
- pair_cmp_cong
-
⊢ ∀cmp1 cmp2 v1 v2 cmp1' cmp2' v1' v2'.
v1 = v1' ∧ v2 = v2' ∧
(∀a b c d. v1' = (a,b) ∧ v2' = (c,d) ⇒ cmp1 a c = cmp1' a c) ∧
(∀a b c d. v1' = (a,b) ∧ v2' = (c,d) ⇒ cmp2 b d = cmp2' b d) ⇒
pair_cmp cmp1 cmp2 v1 v2 = pair_cmp cmp1' cmp2' v1' v2'
- good_cmp_trans
-
⊢ ∀cmp. good_cmp cmp ⇒ transitive (λ(k,v) (k',v'). cmp k k' = Less)
- bool_cmp_antisym
-
⊢ ∀x y. bool_cmp x y = Equal ⇔ (x ⇔ y)
- num_cmp_antisym
-
⊢ ∀x y. num_cmp x y = Equal ⇔ x = y
- char_cmp_antisym
-
⊢ ∀x y. char_cmp x y = Equal ⇔ x = y
- list_cmp_antisym
-
⊢ ∀cmp x y.
(∀x y. cmp x y = Equal ⇔ x = y) ⇒ (list_cmp cmp x y = Equal ⇔ x = y)
- string_cmp_antisym
-
⊢ ∀x y. string_cmp x y = Equal ⇔ x = y
- pair_cmp_antisym
-
⊢ ∀cmp1 cmp2 x y.
(∀x y. cmp1 x y = Equal ⇔ x = y) ∧ (∀x y. cmp2 x y = Equal ⇔ x = y) ⇒
(pair_cmp cmp1 cmp2 x y = Equal ⇔ x = y)
- option_cmp_antisym
-
⊢ ∀cmp x y.
(∀x y. cmp x y = Equal ⇔ x = y) ⇒ (option_cmp cmp x y = Equal ⇔ x = y)
- option_cmp2_antisym
-
⊢ ∀cmp x y.
(∀x y. cmp x y = Equal ⇔ x = y) ⇒ (option_cmp2 cmp x y = Equal ⇔ x = y)
- antisym_resp_equiv
-
⊢ ∀cmp f.
(∀x y. cmp x y = Equal ⇒ x = y) ⇒
resp_equiv cmp f ∧ ∀cmp2. good_cmp cmp2 ⇒ resp_equiv2 cmp cmp2 f
- list_cmp_equal_list_rel
-
⊢ ∀cmp l1 l2.
list_cmp cmp l1 l2 = Equal ⇔ LIST_REL (λx y. cmp x y = Equal) l1 l2
- TO_of_LinearOrder_LLEX
-
⊢ ∀R.
irreflexive R ⇒
TO_of_LinearOrder (LLEX R) = list_cmp (TO_of_LinearOrder R)