- SET_TO_LIST_THM
-
⊢ FINITE s ⇒
SET_TO_LIST s = if s = ∅ then [] else CHOICE s::SET_TO_LIST (REST s)
- SET_TO_LIST_IND
-
⊢ ∀P. (∀s. (FINITE s ∧ s ≠ ∅ ⇒ P (REST s)) ⇒ P s) ⇒ ∀v. P v
- LIST_TO_SET_THM
-
⊢ LIST_TO_SET [] = ∅ ∧ LIST_TO_SET (h::t) = h INSERT LIST_TO_SET t
- SET_TO_LIST_INV
-
⊢ ∀s. FINITE s ⇒ LIST_TO_SET (SET_TO_LIST s) = s
- SET_TO_LIST_CARD
-
⊢ ∀s. FINITE s ⇒ LENGTH (SET_TO_LIST s) = CARD s
- SET_TO_LIST_IN_MEM
-
⊢ ∀s. FINITE s ⇒ ∀x. x ∈ s ⇔ MEM x (SET_TO_LIST s)
- MEM_SET_TO_LIST
-
⊢ ∀s. FINITE s ⇒ ∀x. MEM x (SET_TO_LIST s) ⇔ x ∈ s
- SET_TO_LIST_SING
-
⊢ SET_TO_LIST {x} = [x]
- UNION_APPEND
-
⊢ ∀l1 l2. LIST_TO_SET l1 ∪ LIST_TO_SET l2 = LIST_TO_SET (l1 ++ l2)
- LIST_TO_SET_APPEND
-
⊢ ∀l1 l2. LIST_TO_SET (l1 ++ l2) = LIST_TO_SET l1 ∪ LIST_TO_SET l2
- FINITE_LIST_TO_SET
-
⊢ ∀l. FINITE (LIST_TO_SET l)
- LIST_TO_BAG_alt
-
⊢ ∀l x. LIST_TO_BAG l x = LENGTH (FILTER ($= x) l)
- BAG_TO_LIST_THM
-
⊢ FINITE_BAG bag ⇒
BAG_TO_LIST bag = if bag = {||} then []
else BAG_CHOICE bag::BAG_TO_LIST (BAG_REST bag)
- BAG_TO_LIST_IND
-
⊢ ∀P.
(∀bag. (FINITE_BAG bag ∧ bag ≠ {||} ⇒ P (BAG_REST bag)) ⇒ P bag) ⇒
∀v. P v
- BAG_TO_LIST_INV
-
⊢ ∀b. FINITE_BAG b ⇒ LIST_TO_BAG (BAG_TO_LIST b) = b
- BAG_IN_MEM
-
⊢ ∀b. FINITE_BAG b ⇒ ∀x. x ⋲ b ⇔ MEM x (BAG_TO_LIST b)
- MEM_BAG_TO_LIST
-
⊢ ∀b. FINITE_BAG b ⇒ ∀x. MEM x (BAG_TO_LIST b) ⇔ x ⋲ b
- FINITE_LIST_TO_BAG
-
⊢ FINITE_BAG (LIST_TO_BAG ls)
- EVERY_LIST_TO_BAG
-
⊢ BAG_EVERY P (LIST_TO_BAG ls) ⇔ EVERY P ls
- LIST_TO_BAG_APPEND
-
⊢ ∀l1 l2. LIST_TO_BAG (l1 ++ l2) = LIST_TO_BAG l1 ⊎ LIST_TO_BAG l2
- LIST_TO_BAG_MAP
-
⊢ LIST_TO_BAG (MAP f b) = BAG_IMAGE f (LIST_TO_BAG b)
- LIST_TO_BAG_FILTER
-
⊢ LIST_TO_BAG (FILTER f b) = BAG_FILTER f (LIST_TO_BAG b)
- IN_LIST_TO_BAG
-
⊢ ∀h l. h ⋲ LIST_TO_BAG l ⇔ MEM h l
- LIST_TO_BAG_DISTINCT
-
⊢ BAG_ALL_DISTINCT (LIST_TO_BAG b) ⇔ ALL_DISTINCT b
- LIST_TO_BAG_EQ_EMPTY
-
⊢ ∀l. LIST_TO_BAG l = {||} ⇔ l = []
- PERM_LIST_TO_BAG
-
⊢ ∀l1 l2. LIST_TO_BAG l1 = LIST_TO_BAG l2 ⇔ PERM l1 l2
- CARD_LIST_TO_BAG
-
⊢ BAG_CARD (LIST_TO_BAG ls) = LENGTH ls
- BAG_TO_LIST_CARD
-
⊢ ∀b. FINITE_BAG b ⇒ LENGTH (BAG_TO_LIST b) = BAG_CARD b
- BAG_TO_LIST_EQ_NIL
-
⊢ FINITE_BAG b ⇒
([] = BAG_TO_LIST b ⇔ b = {||}) ∧ (BAG_TO_LIST b = [] ⇔ b = {||})
- LIST_ELEM_COUNT_LIST_TO_BAG
-
⊢ LIST_ELEM_COUNT e ls = LIST_TO_BAG ls e
- WF_mlt_list
-
⊢ ∀R. WF R ⇒ WF (mlt_list R)
- BAG_OF_FMAP_THM
-
⊢ (∀f. BAG_OF_FMAP f FEMPTY = {||}) ∧
∀f b k v.
BAG_OF_FMAP f (b |+ (k,v)) = BAG_INSERT (f k v) (BAG_OF_FMAP f (b \\ k))
- BAG_IN_BAG_OF_FMAP
-
⊢ ∀x f b. x ⋲ BAG_OF_FMAP f b ⇔ ∃k. k ∈ FDOM b ∧ x = f k (b ' k)
- FINITE_BAG_OF_FMAP
-
⊢ ∀f b. FINITE_BAG (BAG_OF_FMAP f b)