- FMSP_FDOM
-
⊢ FUN_REL (FMSP AN BC) (FUN_REL AN $<=>) FDOM domain
- FMSP_FEMPTY
-
⊢ FMSP AN BC FEMPTY LN
- FMSP_FUPDATE
-
⊢ bi_unique AN ⇒
FUN_REL (FMSP AN BC) (FUN_REL (PAIR_REL AN BC) (FMSP AN BC)) $|+
(λsp (n,v). insert n v sp)
- FMSP_bitotal
-
⊢ bitotal AN ∧ bitotal BC ∧ bi_unique AN ⇒ bitotal (FMSP AN BC)
- FMSP_FORALL
-
⊢ bitotal AN ∧ bitotal BC ∧ bi_unique AN ⇒
FUN_REL (FUN_REL (FMSP AN BC) $<=>) $<=> $! $!
- FMSP_FUNION
-
⊢ FUN_REL (FMSP AN BC) (FUN_REL (FMSP AN BC) (FMSP AN BC)) $FUNION union
- FMSP_FDOMSUB
-
⊢ bi_unique AN ⇒
FUN_REL (FMSP AN BC) (FUN_REL AN (FMSP AN BC)) $\\ (combin$C delete)