Theory "fmsp"

Parents     transfer   sptree

Signature

Constant Type
FMSP :(α -> num -> bool) -> (β -> γ -> bool) -> (α |-> β) -> γ spt -> bool

Definitions

FMSP_def
⊢ ∀AN BC fm sp.
      FMSP AN BC fm sp ⇔ ∀a n. AN a n ⇒ OPTREL BC (FLOOKUP fm a) (lookup n sp)


Theorems

FMSP_FDOM
⊢ FUN_REL (FMSP AN BC) (FUN_REL AN $<=>) FDOM domain
FMSP_FEMPTY
⊢ FMSP AN BC FEMPTY LN
FMSP_FUPDATE
⊢ bi_unique AN ⇒
  FUN_REL (FMSP AN BC) (FUN_REL (PAIR_REL AN BC) (FMSP AN BC)) $|+
    (λsp (n,v). insert n v sp)
FMSP_bitotal
⊢ bitotal AN ∧ bitotal BC ∧ bi_unique AN ⇒ bitotal (FMSP AN BC)
FMSP_FORALL
⊢ bitotal AN ∧ bitotal BC ∧ bi_unique AN ⇒
  FUN_REL (FUN_REL (FMSP AN BC) $<=>) $<=> $! $!
FMSP_FUNION
⊢ FUN_REL (FMSP AN BC) (FUN_REL (FMSP AN BC) (FMSP AN BC)) $FUNION union
FMSP_FDOMSUB
⊢ bi_unique AN ⇒
  FUN_REL (FMSP AN BC) (FUN_REL AN (FMSP AN BC)) $\\ (combin$C delete)