Theory "gcd"

Parents     divides   basicSize

Signature

Constant Type
gcd :num -> num -> num
is_gcd :num -> num reln
lcm :num -> num -> num

Definitions

is_gcd_def
⊢ ∀a b c.
      is_gcd a b c ⇔
      divides c a ∧ divides c b ∧ ∀d. divides d a ∧ divides d b ⇒ divides d c
lcm_def
⊢ ∀m n. lcm m n = if m = 0 ∨ n = 0 then 0 else m * n DIV gcd m n


Theorems

IS_GCD_UNIQUE
⊢ ∀a b c d. is_gcd a b c ∧ is_gcd a b d ⇒ c = d
IS_GCD_REF
⊢ ∀a. is_gcd a a a
IS_GCD_SYM
⊢ ∀a b c. is_gcd a b c ⇔ is_gcd b a c
IS_GCD_0R
⊢ ∀a. is_gcd a 0 a
IS_GCD_0L
⊢ ∀a. is_gcd 0 a a
PRIME_IS_GCD
⊢ ∀p b. prime p ⇒ divides p b ∨ is_gcd p b 1
IS_GCD_MINUS_L
⊢ ∀a b c. b ≤ a ∧ is_gcd (a − b) b c ⇒ is_gcd a b c
IS_GCD_MINUS_R
⊢ ∀a b c. a ≤ b ∧ is_gcd a (b − a) c ⇒ is_gcd a b c
gcd_ind
⊢ ∀P.
      (∀y. P 0 y) ∧ (∀x. P (SUC x) 0) ∧
      (∀x y.
           (¬(y ≤ x) ⇒ P (SUC x) (y − x)) ∧ (y ≤ x ⇒ P (x − y) (SUC y)) ⇒
           P (SUC x) (SUC y)) ⇒
      ∀v v1. P v v1
gcd_def
⊢ (∀y. gcd 0 y = y) ∧ (∀x. gcd (SUC x) 0 = SUC x) ∧
  ∀y x.
      gcd (SUC x) (SUC y) = if y ≤ x then gcd (x − y) (SUC y)
      else gcd (SUC x) (y − x)
gcd_def_compute
⊢ (∀y. gcd 0 y = y) ∧ (∀x. gcd (NUMERAL (BIT1 x)) 0 = NUMERAL (BIT1 x)) ∧
  (∀x. gcd (NUMERAL (BIT2 x)) 0 = NUMERAL (BIT2 x)) ∧
  (∀y x.
       gcd (NUMERAL (BIT1 x)) (NUMERAL (BIT1 y)) =
       if NUMERAL (BIT1 y) − 1 ≤ NUMERAL (BIT1 x) − 1 then
         gcd (NUMERAL (BIT1 x) − 1 − (NUMERAL (BIT1 y) − 1))
           (NUMERAL (BIT1 y))
       else
         gcd (NUMERAL (BIT1 x))
           (NUMERAL (BIT1 y) − 1 − (NUMERAL (BIT1 x) − 1))) ∧
  (∀y x.
       gcd (NUMERAL (BIT2 x)) (NUMERAL (BIT1 y)) =
       if NUMERAL (BIT1 y) − 1 ≤ NUMERAL (BIT1 x) then
         gcd (NUMERAL (BIT1 x) − (NUMERAL (BIT1 y) − 1)) (NUMERAL (BIT1 y))
       else gcd (NUMERAL (BIT2 x)) (NUMERAL (BIT1 y) − 1 − NUMERAL (BIT1 x))) ∧
  (∀y x.
       gcd (NUMERAL (BIT1 x)) (NUMERAL (BIT2 y)) =
       if NUMERAL (BIT1 y) ≤ NUMERAL (BIT1 x) − 1 then
         gcd (NUMERAL (BIT1 x) − 1 − NUMERAL (BIT1 y)) (NUMERAL (BIT2 y))
       else gcd (NUMERAL (BIT1 x)) (NUMERAL (BIT1 y) − (NUMERAL (BIT1 x) − 1))) ∧
  ∀y x.
      gcd (NUMERAL (BIT2 x)) (NUMERAL (BIT2 y)) =
      if NUMERAL (BIT1 y) ≤ NUMERAL (BIT1 x) then
        gcd (NUMERAL (BIT1 x) − NUMERAL (BIT1 y)) (NUMERAL (BIT2 y))
      else gcd (NUMERAL (BIT2 x)) (NUMERAL (BIT1 y) − NUMERAL (BIT1 x))
GCD_IS_GCD
⊢ ∀a b. is_gcd a b (gcd a b)
GCD_IS_GREATEST_COMMON_DIVISOR
⊢ ∀a b.
      divides (gcd a b) a ∧ divides (gcd a b) b ∧
      ∀d. divides d a ∧ divides d b ⇒ divides d (gcd a b)
GCD_REF
⊢ ∀a. gcd a a = a
GCD_SYM
⊢ ∀a b. gcd a b = gcd b a
GCD_0R
⊢ ∀a. gcd a 0 = a
GCD_0L
⊢ ∀a. gcd 0 a = a
GCD_ADD_R
⊢ ∀a b. gcd a (a + b) = gcd a b
GCD_ADD_R_THM
⊢ (∀a b. gcd a (a + b) = gcd a b) ∧ ∀a b. gcd a (b + a) = gcd a b
GCD_ADD_L
⊢ ∀a b. gcd (a + b) a = gcd a b
GCD_ADD_L_THM
⊢ (∀a b. gcd (a + b) a = gcd a b) ∧ ∀a b. gcd (b + a) a = gcd a b
GCD_EQ_0
⊢ ∀n m. gcd n m = 0 ⇔ n = 0 ∧ m = 0
GCD_1
⊢ gcd 1 x = 1 ∧ gcd x 1 = 1
PRIME_GCD
⊢ ∀p b. prime p ⇒ divides p b ∨ gcd p b = 1
L_EUCLIDES
⊢ ∀a b c. gcd a b = 1 ∧ divides b (a * c) ⇒ divides b c
P_EUCLIDES
⊢ ∀p a b. prime p ∧ divides p (a * b) ⇒ divides p a ∨ divides p b
FACTOR_OUT_GCD
⊢ ∀n m. n ≠ 0 ∧ m ≠ 0 ⇒ ∃p q. n = p * gcd n m ∧ m = q * gcd n m ∧ gcd p q = 1
GCD_SUCfree_ind
⊢ ∀P.
      (∀y. P 0 y) ∧ (∀x y. P x y ⇒ P y x) ∧ (∀x. P x x) ∧
      (∀x y. 0 < x ∧ 0 < y ∧ P x y ⇒ P x (x + y)) ⇒
      ∀m n. P m n
LINEAR_GCD
⊢ ∀n m. n ≠ 0 ⇒ ∃p q. p * n = q * m + gcd m n
GCD_EFFICIENTLY
⊢ ∀a b. gcd a b = if a = 0 then b else gcd (b MOD a) a
LCM_IS_LEAST_COMMON_MULTIPLE
⊢ divides m (lcm m n) ∧ divides n (lcm m n) ∧
  ∀p. divides m p ∧ divides n p ⇒ divides (lcm m n) p
LCM_0
⊢ lcm 0 x = 0 ∧ lcm x 0 = 0
LCM_1
⊢ lcm 1 x = x ∧ lcm x 1 = x
LCM_COMM
⊢ lcm a b = lcm b a
LCM_LE
⊢ 0 < m ∧ 0 < n ⇒ m ≤ lcm m n ∧ m ≤ lcm n m
LCM_LEAST
⊢ 0 < m ∧ 0 < n ⇒ ∀p. 0 < p ∧ p < lcm m n ⇒ ¬divides m p ∨ ¬divides n p
GCD_COMMON_FACTOR
⊢ ∀m n k. gcd (k * m) (k * n) = k * gcd m n
GCD_CANCEL_MULT
⊢ ∀m n k. gcd m k = 1 ⇒ gcd m (k * n) = gcd m n
BINARY_GCD
⊢ ∀m n.
      (EVEN m ∧ EVEN n ⇒ gcd m n = 2 * gcd (m DIV 2) (n DIV 2)) ∧
      (EVEN m ∧ ODD n ⇒ gcd m n = gcd (m DIV 2) n)