Theory "lim"

Parents     seq

Signature

Constant Type
contl :(real -> real) -> real -> bool
differentiable :(real -> real) -> real -> bool
diffl :(real -> real) -> real reln
tends_real_real :(real -> real) -> real reln

Definitions

tends_real_real
⊢ ∀f l x0. (f -> l) x0 ⇔ (f tends l) (mtop mr1,tendsto (mr1,x0))
diffl
⊢ ∀f l x. (f diffl l) x ⇔ ((λh. (f (x + h) − f x) / h) -> l) 0
contl
⊢ ∀f x. f contl x ⇔ ((λh. f (x + h)) -> f x) 0
differentiable
⊢ ∀f x. f differentiable x ⇔ ∃l. (f diffl l) x


Theorems

LIM
⊢ ∀f y0 x0.
      (f -> y0) x0 ⇔
      ∀e.
          0 < e ⇒
          ∃d.
              0 < d ∧
              ∀x. 0 < abs (x − x0) ∧ abs (x − x0) < d ⇒ abs (f x − y0) < e
LIM_CONST
⊢ ∀k x. ((λx. k) -> k) x
LIM_ADD
⊢ ∀f g l m x. (f -> l) x ∧ (g -> m) x ⇒ ((λx. f x + g x) -> l + m) x
LIM_MUL
⊢ ∀f g l m x. (f -> l) x ∧ (g -> m) x ⇒ ((λx. f x * g x) -> l * m) x
LIM_NEG
⊢ ∀f l x. (f -> l) x ⇔ ((λx. -f x) -> -l) x
LIM_INV
⊢ ∀f l x. (f -> l) x ∧ l ≠ 0 ⇒ ((λx. (f x)⁻¹) -> l⁻¹) x
LIM_SUB
⊢ ∀f g l m x. (f -> l) x ∧ (g -> m) x ⇒ ((λx. f x − g x) -> l − m) x
LIM_DIV
⊢ ∀f g l m x. (f -> l) x ∧ (g -> m) x ∧ m ≠ 0 ⇒ ((λx. f x / g x) -> l / m) x
LIM_NULL
⊢ ∀f l x. (f -> l) x ⇔ ((λx. f x − l) -> 0) x
LIM_X
⊢ ∀x0. ((λx. x) -> x0) x0
LIM_UNIQ
⊢ ∀f l m x. (f -> l) x ∧ (f -> m) x ⇒ l = m
LIM_EQUAL
⊢ ∀f g l x0. (∀x. x ≠ x0 ⇒ f x = g x) ⇒ ((f -> l) x0 ⇔ (g -> l) x0)
LIM_TRANSFORM
⊢ ∀f g x0 l. ((λx. f x − g x) -> 0) x0 ∧ (g -> l) x0 ⇒ (f -> l) x0
DIFF_UNIQ
⊢ ∀f l m x. (f diffl l) x ∧ (f diffl m) x ⇒ l = m
DIFF_CONT
⊢ ∀f l x. (f diffl l) x ⇒ f contl x
CONTL_LIM
⊢ ∀f x. f contl x ⇔ (f -> f x) x
DIFF_CARAT
⊢ ∀f l x.
      (f diffl l) x ⇔
      ∃g. (∀z. f z − f x = g z * (z − x)) ∧ g contl x ∧ g x = l
CONT_CONST
⊢ ∀k x. (λx. k) contl x
CONT_ADD
⊢ ∀f g x. f contl x ∧ g contl x ⇒ (λx. f x + g x) contl x
CONT_MUL
⊢ ∀f g x. f contl x ∧ g contl x ⇒ (λx. f x * g x) contl x
CONT_NEG
⊢ ∀f x. f contl x ⇒ (λx. -f x) contl x
CONT_INV
⊢ ∀f x. f contl x ∧ f x ≠ 0 ⇒ (λx. (f x)⁻¹) contl x
CONT_SUB
⊢ ∀f g x. f contl x ∧ g contl x ⇒ (λx. f x − g x) contl x
CONT_DIV
⊢ ∀f g x. f contl x ∧ g contl x ∧ g x ≠ 0 ⇒ (λx. f x / g x) contl x
CONT_COMPOSE
⊢ ∀f g x. f contl x ∧ g contl f x ⇒ (λx. g (f x)) contl x
IVT
⊢ ∀f a b y.
      a ≤ b ∧ (f a ≤ y ∧ y ≤ f b) ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ⇒
      ∃x. a ≤ x ∧ x ≤ b ∧ f x = y
IVT2
⊢ ∀f a b y.
      a ≤ b ∧ (f b ≤ y ∧ y ≤ f a) ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ⇒
      ∃x. a ≤ x ∧ x ≤ b ∧ f x = y
DIFF_CONST
⊢ ∀k x. ((λx. k) diffl 0) x
DIFF_ADD
⊢ ∀f g l m x.
      (f diffl l) x ∧ (g diffl m) x ⇒ ((λx. f x + g x) diffl (l + m)) x
DIFF_MUL
⊢ ∀f g l m x.
      (f diffl l) x ∧ (g diffl m) x ⇒
      ((λx. f x * g x) diffl (l * g x + m * f x)) x
DIFF_CMUL
⊢ ∀f c l x. (f diffl l) x ⇒ ((λx. c * f x) diffl (c * l)) x
DIFF_NEG
⊢ ∀f l x. (f diffl l) x ⇒ ((λx. -f x) diffl -l) x
DIFF_SUB
⊢ ∀f g l m x.
      (f diffl l) x ∧ (g diffl m) x ⇒ ((λx. f x − g x) diffl (l − m)) x
DIFF_CHAIN
⊢ ∀f g l m x.
      (f diffl l) (g x) ∧ (g diffl m) x ⇒ ((λx. f (g x)) diffl (l * m)) x
DIFF_X
⊢ ∀x. ((λx. x) diffl 1) x
DIFF_POW
⊢ ∀n x. ((λx. x pow n) diffl (&n * x pow (n − 1))) x
DIFF_XM1
⊢ ∀x. x ≠ 0 ⇒ ((λx. x⁻¹) diffl -(x⁻¹ pow 2)) x
DIFF_INV
⊢ ∀f l x. (f diffl l) x ∧ f x ≠ 0 ⇒ ((λx. (f x)⁻¹) diffl -(l / f x pow 2)) x
DIFF_DIV
⊢ ∀f g l m x.
      (f diffl l) x ∧ (g diffl m) x ∧ g x ≠ 0 ⇒
      ((λx. f x / g x) diffl ((l * g x − m * f x) / g x pow 2)) x
DIFF_SUM
⊢ ∀f f' m n x.
      (∀r. m ≤ r ∧ r < m + n ⇒ ((λx. f r x) diffl f' r x) x) ⇒
      ((λx. sum (m,n) (λn. f n x)) diffl sum (m,n) (λr. f' r x)) x
CONT_BOUNDED
⊢ ∀f a b.
      a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ⇒
      ∃M. ∀x. a ≤ x ∧ x ≤ b ⇒ f x ≤ M
CONT_HASSUP
⊢ ∀f a b.
      a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ⇒
      ∃M.
          (∀x. a ≤ x ∧ x ≤ b ⇒ f x ≤ M) ∧
          ∀N. N < M ⇒ ∃x. a ≤ x ∧ x ≤ b ∧ N < f x
CONT_ATTAINS
⊢ ∀f a b.
      a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ⇒
      ∃M. (∀x. a ≤ x ∧ x ≤ b ⇒ f x ≤ M) ∧ ∃x. a ≤ x ∧ x ≤ b ∧ f x = M
CONT_ATTAINS2
⊢ ∀f a b.
      a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ⇒
      ∃M. (∀x. a ≤ x ∧ x ≤ b ⇒ M ≤ f x) ∧ ∃x. a ≤ x ∧ x ≤ b ∧ f x = M
CONT_ATTAINS_ALL
⊢ ∀f a b.
      a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ⇒
      ∃L M.
          L ≤ M ∧ (∀y. L ≤ y ∧ y ≤ M ⇒ ∃x. a ≤ x ∧ x ≤ b ∧ f x = y) ∧
          ∀x. a ≤ x ∧ x ≤ b ⇒ L ≤ f x ∧ f x ≤ M
DIFF_LINC
⊢ ∀f x l.
      (f diffl l) x ∧ 0 < l ⇒ ∃d. 0 < d ∧ ∀h. 0 < h ∧ h < d ⇒ f x < f (x + h)
DIFF_LDEC
⊢ ∀f x l.
      (f diffl l) x ∧ l < 0 ⇒ ∃d. 0 < d ∧ ∀h. 0 < h ∧ h < d ⇒ f x < f (x − h)
DIFF_LMAX
⊢ ∀f x l.
      (f diffl l) x ∧ (∃d. 0 < d ∧ ∀y. abs (x − y) < d ⇒ f y ≤ f x) ⇒ l = 0
DIFF_LMIN
⊢ ∀f x l.
      (f diffl l) x ∧ (∃d. 0 < d ∧ ∀y. abs (x − y) < d ⇒ f x ≤ f y) ⇒ l = 0
DIFF_LCONST
⊢ ∀f x l.
      (f diffl l) x ∧ (∃d. 0 < d ∧ ∀y. abs (x − y) < d ⇒ f y = f x) ⇒ l = 0
INTERVAL_LEMMA
⊢ ∀a b x. a < x ∧ x < b ⇒ ∃d. 0 < d ∧ ∀y. abs (x − y) < d ⇒ a ≤ y ∧ y ≤ b
ROLLE
⊢ ∀f a b.
      a < b ∧ f a = f b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ∧
      (∀x. a < x ∧ x < b ⇒ f differentiable x) ⇒
      ∃z. a < z ∧ z < b ∧ (f diffl 0) z
MVT_LEMMA
⊢ ∀f a b.
      (λx. f x − (f b − f a) / (b − a) * x) a =
      (λx. f x − (f b − f a) / (b − a) * x) b
MVT
⊢ ∀f a b.
      a < b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ∧
      (∀x. a < x ∧ x < b ⇒ f differentiable x) ⇒
      ∃l z. a < z ∧ z < b ∧ (f diffl l) z ∧ f b − f a = (b − a) * l
DIFF_ISCONST_END
⊢ ∀f a b.
      a < b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ∧
      (∀x. a < x ∧ x < b ⇒ (f diffl 0) x) ⇒
      f b = f a
DIFF_ISCONST
⊢ ∀f a b.
      a < b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ∧
      (∀x. a < x ∧ x < b ⇒ (f diffl 0) x) ⇒
      ∀x. a ≤ x ∧ x ≤ b ⇒ f x = f a
DIFF_ISCONST_ALL
⊢ ∀f. (∀x. (f diffl 0) x) ⇒ ∀x y. f x = f y
INTERVAL_ABS
⊢ ∀x z d. x − d ≤ z ∧ z ≤ x + d ⇔ abs (z − x) ≤ d
CONT_INJ_LEMMA
⊢ ∀f g x d.
      0 < d ∧ (∀z. abs (z − x) ≤ d ⇒ g (f z) = z) ∧
      (∀z. abs (z − x) ≤ d ⇒ f contl z) ⇒
      ¬∀z. abs (z − x) ≤ d ⇒ f z ≤ f x
CONT_INJ_LEMMA2
⊢ ∀f g x d.
      0 < d ∧ (∀z. abs (z − x) ≤ d ⇒ g (f z) = z) ∧
      (∀z. abs (z − x) ≤ d ⇒ f contl z) ⇒
      ¬∀z. abs (z − x) ≤ d ⇒ f x ≤ f z
CONT_INJ_RANGE
⊢ ∀f g x d.
      0 < d ∧ (∀z. abs (z − x) ≤ d ⇒ g (f z) = z) ∧
      (∀z. abs (z − x) ≤ d ⇒ f contl z) ⇒
      ∃e. 0 < e ∧ ∀y. abs (y − f x) ≤ e ⇒ ∃z. abs (z − x) ≤ d ∧ f z = y
CONT_INVERSE
⊢ ∀f g x d.
      0 < d ∧ (∀z. abs (z − x) ≤ d ⇒ g (f z) = z) ∧
      (∀z. abs (z − x) ≤ d ⇒ f contl z) ⇒
      g contl f x
DIFF_INVERSE
⊢ ∀f g l x d.
      0 < d ∧ (∀z. abs (z − x) ≤ d ⇒ g (f z) = z) ∧
      (∀z. abs (z − x) ≤ d ⇒ f contl z) ∧ (f diffl l) x ∧ l ≠ 0 ⇒
      (g diffl l⁻¹) (f x)
DIFF_INVERSE_LT
⊢ ∀f g l x d.
      0 < d ∧ (∀z. abs (z − x) < d ⇒ g (f z) = z) ∧
      (∀z. abs (z − x) < d ⇒ f contl z) ∧ (f diffl l) x ∧ l ≠ 0 ⇒
      (g diffl l⁻¹) (f x)
INTERVAL_CLEMMA
⊢ ∀a b x. a < x ∧ x < b ⇒ ∃d. 0 < d ∧ ∀y. abs (y − x) ≤ d ⇒ a < y ∧ y < b
DIFF_INVERSE_OPEN
⊢ ∀f g l a x b.
      a < x ∧ x < b ∧ (∀z. a < z ∧ z < b ⇒ g (f z) = z ∧ f contl z) ∧
      (f diffl l) x ∧ l ≠ 0 ⇒
      (g diffl l⁻¹) (f x)