Theory "list"

Parents     pred_set   ind_type

Signature

Type Arity
list 1
Constant Type
ALL_DISTINCT :α list -> bool
APPEND :α list -> α list -> α list
CONS :α -> α list -> α list
DROP :num -> α list -> α list
EL :num -> α list -> α
EVERY :(α -> bool) -> α list -> bool
EVERYi :(num -> α -> bool) -> α list -> bool
EXISTS :(α -> bool) -> α list -> bool
FILTER :(α -> bool) -> α list -> α list
FIND :(α -> bool) -> α list -> α option
FLAT :α list list -> α list
FOLDL :(β -> α -> β) -> β -> α list -> β
FOLDL2 :(α -> β -> γ -> α) -> α -> β list -> γ list -> α
FOLDR :(α -> β -> β) -> β -> α list -> β
FRONT :α list -> α list
GENLIST :(num -> α) -> num -> α list
GENLIST_AUX :(num -> α) -> num -> α list -> α list
HD :α list -> α
INDEX_FIND :num -> (α -> bool) -> α list -> (num # α) option
INDEX_OF :α -> α list -> num option
LAST :α list -> α
LEN :α list -> num -> num
LENGTH :α list -> num
LIST_APPLY :(β -> α) list -> β list -> α list
LIST_BIND :β list -> (β -> α list) -> α list
LIST_GUARD :bool -> unit list
LIST_IGNORE_BIND :β list -> α list -> α list
LIST_LIFT2 :(β -> γ -> α) -> β list -> γ list -> α list
LIST_REL :(α -> β -> bool) -> α list -> β list -> bool
LIST_TO_SET :α list -> α -> bool
LLEX :α reln -> α list reln
LRC :α reln -> α list -> α reln
LUPDATE :α -> num -> α list -> α list
MAP :(α -> β) -> α list -> β list
MAP2 :(β -> γ -> α) -> β list -> γ list -> α list
NIL :α list
NULL :α list -> bool
OPT_MMAP :(β -> α option) -> β list -> α list option
PAD_LEFT :α -> num -> α list -> α list
PAD_RIGHT :α -> num -> α list -> α list
REV :α list -> α list -> α list
REVERSE :α list -> α list
SET_TO_LIST :(α -> bool) -> α list
SHORTLEX :α reln -> α list reln
SNOC :α -> α list -> α list
SUM :num list -> num
SUM_ACC :num list -> num -> num
TAKE :num -> α list -> α list
TL :α list -> α list
UNIQUE :α -> α list -> bool
UNZIP :(α, β) alist -> α list # β list
ZIP :α list # β list -> (α, β) alist
dropWhile :(α -> bool) -> α list -> α list
isPREFIX :α list reln
list_CASE :α list -> β -> (α -> α list -> β) -> β
list_size :(α -> num) -> α list -> num
nub :α list -> α list
oEL :num -> α list -> α option
oHD :α list -> α option
splitAtPki :(num -> β -> bool) -> (β list -> β list -> α) -> β list -> α

Definitions

SUM_ACC_DEF
⊢ (∀acc. SUM_ACC [] acc = acc) ∧
  ∀h t acc. SUM_ACC (h::t) acc = SUM_ACC t (h + acc)
REV_DEF
⊢ (∀acc. REV [] acc = acc) ∧ ∀h t acc. REV (h::t) acc = REV t (h::acc)
LEN_DEF
⊢ (∀n. LEN [] n = n) ∧ ∀h t n. LEN (h::t) n = LEN t (n + 1)
PAD_RIGHT
⊢ ∀c n s. PAD_RIGHT c n s = s ++ GENLIST (K c) (n − LENGTH s)
PAD_LEFT
⊢ ∀c n s. PAD_LEFT c n s = GENLIST (K c) (n − LENGTH s) ++ s
GENLIST_AUX
⊢ (∀f l. GENLIST_AUX f 0 l = l) ∧
  ∀f n l. GENLIST_AUX f (SUC n) l = GENLIST_AUX f n (f n::l)
GENLIST
⊢ (∀f. GENLIST f 0 = []) ∧ ∀f n. GENLIST f (SUC n) = SNOC (f n) (GENLIST f n)
SNOC
⊢ (∀x. SNOC x [] = [x]) ∧ ∀x x' l. SNOC x (x'::l) = x'::SNOC x l
isPREFIX
⊢ (∀l. [] ≼ l ⇔ T) ∧
  ∀h t l. h::t ≼ l ⇔ case l of [] => F | h'::t' => h = h' ∧ t ≼ t'
SET_TO_LIST_primitive_def
⊢ SET_TO_LIST =
  WFREC (@R. WF R ∧ ∀s. FINITE s ∧ s ≠ ∅ ⇒ R (REST s) s)
    (λSET_TO_LIST a.
         I
           (if FINITE a then
              if a = ∅ then [] else CHOICE a::SET_TO_LIST (REST a)
            else ARB))
LRC_def
⊢ (∀R x y. LRC R [] x y ⇔ x = y) ∧
  ∀R h t x y. LRC R (h::t) x y ⇔ x = h ∧ ∃z. R x z ∧ LRC R t z y
ALL_DISTINCT
⊢ (ALL_DISTINCT [] ⇔ T) ∧
  ∀h t. ALL_DISTINCT (h::t) ⇔ ¬MEM h t ∧ ALL_DISTINCT t
DROP_def
⊢ (∀n. DROP n [] = []) ∧
  ∀n x xs. DROP n (x::xs) = if n = 0 then x::xs else DROP (n − 1) xs
TAKE_def
⊢ (∀n. TAKE n [] = []) ∧
  ∀n x xs. TAKE n (x::xs) = if n = 0 then [] else x::TAKE (n − 1) xs
FRONT_DEF
⊢ ∀h t. FRONT (h::t) = if t = [] then [] else h::FRONT t
LAST_DEF
⊢ ∀h t. LAST (h::t) = if t = [] then h else LAST t
REVERSE_DEF
⊢ REVERSE [] = [] ∧ ∀h t. REVERSE (h::t) = REVERSE t ++ [h]
UNZIP
⊢ UNZIP [] = ([],[]) ∧
  ∀x l. UNZIP (x::l) = (FST x::FST (UNZIP l),SND x::SND (UNZIP l))
ZIP_def
⊢ (∀l2. ZIP ([],l2) = []) ∧ (∀l1. ZIP (l1,[]) = []) ∧
  ∀x1 l1 x2 l2. ZIP (x1::l1,x2::l2) = (x1,x2)::ZIP (l1,l2)
list_size_def
⊢ (∀f. list_size f [] = 0) ∧
  ∀f a0 a1. list_size f (a0::a1) = 1 + (f a0 + list_size f a1)
list_case_def
⊢ (∀v f. list_CASE [] v f = v) ∧ ∀a0 a1 v f. list_CASE (a0::a1) v f = f a0 a1
list_TY_DEF
⊢ ∃rep.
      TYPE_DEFINITION
        (λa0'.
             ∀'list' .
                 (∀a0'.
                      a0' = ind_type$CONSTR 0 ARB (λn. ind_type$BOTTOM) ∨
                      (∃a0 a1.
                           a0' =
                           (λa0 a1.
                                ind_type$CONSTR (SUC 0) a0
                                  (ind_type$FCONS a1 (λn. ind_type$BOTTOM)))
                             a0 a1 ∧ 'list' a1) ⇒
                      'list' a0') ⇒
                 'list' a0') rep
NULL_DEF
⊢ (NULL [] ⇔ T) ∧ ∀h t. NULL (h::t) ⇔ F
HD
⊢ ∀h t. HD (h::t) = h
TL
⊢ ∀h t. TL (h::t) = t
SUM
⊢ SUM [] = 0 ∧ ∀h t. SUM (h::t) = h + SUM t
APPEND
⊢ (∀l. [] ++ l = l) ∧ ∀l1 l2 h. h::l1 ++ l2 = h::(l1 ++ l2)
FLAT
⊢ FLAT [] = [] ∧ ∀h t. FLAT (h::t) = h ++ FLAT t
LENGTH
⊢ LENGTH [] = 0 ∧ ∀h t. LENGTH (h::t) = SUC (LENGTH t)
MAP
⊢ (∀f. MAP f [] = []) ∧ ∀f h t. MAP f (h::t) = f h::MAP f t
LIST_TO_SET_DEF
⊢ (∀x. LIST_TO_SET [] x ⇔ F) ∧
  ∀h t x. LIST_TO_SET (h::t) x ⇔ x = h ∨ LIST_TO_SET t x
FILTER
⊢ (∀P. FILTER P [] = []) ∧
  ∀P h t. FILTER P (h::t) = if P h then h::FILTER P t else FILTER P t
FOLDR
⊢ (∀f e. FOLDR f e [] = e) ∧ ∀f e x l. FOLDR f e (x::l) = f x (FOLDR f e l)
FOLDL
⊢ (∀f e. FOLDL f e [] = e) ∧ ∀f e x l. FOLDL f e (x::l) = FOLDL f (f e x) l
EVERY_DEF
⊢ (∀P. EVERY P [] ⇔ T) ∧ ∀P h t. EVERY P (h::t) ⇔ P h ∧ EVERY P t
EXISTS_DEF
⊢ (∀P. EXISTS P [] ⇔ F) ∧ ∀P h t. EXISTS P (h::t) ⇔ P h ∨ EXISTS P t
EL
⊢ (∀l. EL 0 l = HD l) ∧ ∀l n. EL (SUC n) l = EL n (TL l)
INDEX_FIND_def
⊢ (∀i P. INDEX_FIND i P [] = NONE) ∧
  ∀i P h t.
      INDEX_FIND i P (h::t) = if P h then SOME (i,h)
      else INDEX_FIND (SUC i) P t
FIND_def
⊢ ∀P. FIND P = OPTION_MAP SND ∘ INDEX_FIND 0 P
INDEX_OF_def
⊢ ∀x. INDEX_OF x = OPTION_MAP FST ∘ INDEX_FIND 0 ($= x)
LUPDATE_def
⊢ (∀e n. LUPDATE e n [] = []) ∧ (∀e x l. LUPDATE e 0 (x::l) = e::l) ∧
  ∀e n x l. LUPDATE e (SUC n) (x::l) = x::LUPDATE e n l
EVERYi_def
⊢ (∀P. EVERYi P [] ⇔ T) ∧ ∀P h t. EVERYi P (h::t) ⇔ P 0 h ∧ EVERYi (P ∘ SUC) t
splitAtPki_def
⊢ (∀P k. splitAtPki P k [] = k [] []) ∧
  ∀P k h t.
      splitAtPki P k (h::t) = if P 0 h then k [] (h::t)
      else splitAtPki (P ∘ SUC) (λp s. k (h::p) s) t
LIST_BIND_def
⊢ ∀l f. LIST_BIND l f = FLAT (MAP f l)
LIST_IGNORE_BIND_def
⊢ ∀m1 m2. LIST_IGNORE_BIND m1 m2 = LIST_BIND m1 (K m2)
LIST_GUARD_def
⊢ ∀b. LIST_GUARD b = if b then [()] else []
LIST_APPLY_def
⊢ ∀fs xs. fs <*> xs = LIST_BIND fs (combin$C MAP xs)
LIST_LIFT2_def
⊢ ∀f xs ys. LIST_LIFT2 f xs ys = MAP f xs <*> ys
SHORTLEX_def
⊢ (∀R l2. SHORTLEX R [] l2 ⇔ l2 ≠ []) ∧
  ∀R h1 t1 l2.
      SHORTLEX R (h1::t1) l2 ⇔
      case l2 of
        [] => F
      | h2::t2 =>
        if LENGTH t1 < LENGTH t2 then T
        else if LENGTH t1 = LENGTH t2 then
          if R h1 h2 then T else if h1 = h2 then SHORTLEX R t1 t2 else F
        else F
LLEX_def
⊢ (∀R l2. LLEX R [] l2 ⇔ l2 ≠ []) ∧
  ∀R h1 t1 l2.
      LLEX R (h1::t1) l2 ⇔
      case l2 of
        [] => F
      | h2::t2 => if R h1 h2 then T else if h1 = h2 then LLEX R t1 t2 else F
nub_def
⊢ nub [] = [] ∧ ∀x l. nub (x::l) = if MEM x l then nub l else x::nub l
dropWhile_def
⊢ (∀P. dropWhile P [] = []) ∧
  ∀P h t. dropWhile P (h::t) = if P h then dropWhile P t else h::t
UNIQUE_DEF
⊢ ∀e L. UNIQUE e L ⇔ ∃L1 L2. L1 ++ [e] ++ L2 = L ∧ ¬MEM e L1 ∧ ¬MEM e L2
OPT_MMAP_def
⊢ (∀f. OPT_MMAP f [] = SOME []) ∧
  ∀f h0 t0.
      OPT_MMAP f (h0::t0) =
      OPTION_BIND (f h0) (λh. OPTION_BIND (OPT_MMAP f t0) (λt. SOME (h::t)))
oHD_def
⊢ ∀l. oHD l = case l of [] => NONE | h::v1 => SOME h
oEL_def
⊢ (∀n. oEL n [] = NONE) ∧
  ∀n x xs. oEL n (x::xs) = if n = 0 then SOME x else oEL (n − 1) xs


Theorems

EXISTS_LIST
⊢ (∃l. P l) ⇔ P [] ∨ ∃h t. P (h::t)
SUM_SUM_ACC
⊢ ∀L. SUM L = SUM_ACC L 0
SUM_ACC_SUM_LEM
⊢ ∀L n. SUM_ACC L n = SUM L + n
REVERSE_REV
⊢ ∀L. REVERSE L = REV L []
LENGTH_LEN
⊢ ∀L. LENGTH L = LEN L 0
REV_REVERSE_LEM
⊢ ∀L1 L2. REV L1 L2 = REVERSE L1 ++ L2
LEN_LENGTH_LEM
⊢ ∀L n. LEN L n = LENGTH L + n
INFINITE_LIST_UNIV
⊢ INFINITE 𝕌(:α list)
MAP_ZIP_SAME
⊢ ∀ls f. MAP f (ZIP (ls,ls)) = MAP (λx. f (x,x)) ls
FOLDL_ZIP_SAME
⊢ ∀ls f e. FOLDL f e (ZIP (ls,ls)) = FOLDL (λx y. f x (y,y)) e ls
FOLDL_UNION_BIGUNION_paired
⊢ ∀f ls s.
      FOLDL (λs (x,y). s ∪ f x y) s ls =
      s ∪ BIGUNION (IMAGE (UNCURRY f) (LIST_TO_SET ls))
FOLDL_UNION_BIGUNION
⊢ ∀f ls s.
      FOLDL (λs x. s ∪ f x) s ls = s ∪ BIGUNION (IMAGE f (LIST_TO_SET ls))
REVERSE_GENLIST
⊢ REVERSE (GENLIST f n) = GENLIST (λm. f (PRE n − m)) n
EL_REVERSE
⊢ ∀n l. n < LENGTH l ⇒ EL n (REVERSE l) = EL (PRE (LENGTH l − n)) l
SUM_IMAGE_eq_SUM_MAP_SET_TO_LIST
⊢ FINITE s ⇒ ∑ f s = SUM (MAP f (SET_TO_LIST s))
SUM_MAP_FOLDL
⊢ ∀ls. SUM (MAP f ls) = FOLDL (λa e. a + f e) 0 ls
SUM_APPEND
⊢ ∀l1 l2. SUM (l1 ++ l2) = SUM l1 + SUM l2
SUM_SNOC
⊢ ∀x l. SUM (SNOC x l) = SUM l + x
FOLDL_SNOC
⊢ ∀f e x l. FOLDL f e (SNOC x l) = f (FOLDL f e l) x
ALL_DISTINCT_GENLIST
⊢ ALL_DISTINCT (GENLIST f n) ⇔ ∀m1 m2. m1 < n ∧ m2 < n ∧ f m1 = f m2 ⇒ m1 = m2
ALL_DISTINCT_SNOC
⊢ ∀x l. ALL_DISTINCT (SNOC x l) ⇔ ¬MEM x l ∧ ALL_DISTINCT l
MEM_GENLIST
⊢ MEM x (GENLIST f n) ⇔ ∃m. m < n ∧ x = f m
GENLIST_NUMERALS
⊢ GENLIST f 0 = [] ∧ GENLIST f (NUMERAL n) = GENLIST_AUX f (NUMERAL n) []
GENLIST_GENLIST_AUX
⊢ ∀n. GENLIST f n = GENLIST_AUX f n []
NULL_GENLIST
⊢ ∀n f. NULL (GENLIST f n) ⇔ n = 0
GENLIST_CONS
⊢ GENLIST f (SUC n) = f 0::GENLIST (f ∘ SUC) n
ZIP_GENLIST
⊢ ∀l f n. LENGTH l = n ⇒ ZIP (l,GENLIST f n) = GENLIST (λx. (EL x l,f x)) n
TL_GENLIST
⊢ ∀f n. TL (GENLIST f (SUC n)) = GENLIST (f ∘ SUC) n
EXISTS_GENLIST
⊢ ∀n. EXISTS P (GENLIST f n) ⇔ ∃i. i < n ∧ P (f i)
EVERY_GENLIST
⊢ ∀n. EVERY P (GENLIST f n) ⇔ ∀i. i < n ⇒ P (f i)
GENLIST_APPEND
⊢ ∀f a b. GENLIST f (a + b) = GENLIST f b ++ GENLIST (λt. f (t + b)) a
GENLIST_FUN_EQ
⊢ ∀n f g. GENLIST f n = GENLIST g n ⇔ ∀x. x < n ⇒ f x = g x
HD_GENLIST_COR
⊢ ∀n f. 0 < n ⇒ HD (GENLIST f n) = f 0
HD_GENLIST
⊢ HD (GENLIST f (SUC n)) = f 0
EL_GENLIST
⊢ ∀f n x. x < n ⇒ EL x (GENLIST f n) = f x
MAP_GENLIST
⊢ ∀f g n. MAP f (GENLIST g n) = GENLIST (f ∘ g) n
GENLIST_AUX_compute
⊢ (∀f l. GENLIST_AUX f 0 l = l) ∧
  (∀f n l.
       GENLIST_AUX f (NUMERAL (BIT1 n)) l =
       GENLIST_AUX f (NUMERAL (BIT1 n) − 1) (f (NUMERAL (BIT1 n) − 1)::l)) ∧
  ∀f n l.
      GENLIST_AUX f (NUMERAL (BIT2 n)) l =
      GENLIST_AUX f (NUMERAL (BIT1 n)) (f (NUMERAL (BIT1 n))::l)
LENGTH_GENLIST
⊢ ∀f n. LENGTH (GENLIST f n) = n
SNOC_CASES
⊢ ∀ll. ll = [] ∨ ∃x l. ll = SNOC x l
SNOC_INDUCT
⊢ ∀P. P [] ∧ (∀l. P l ⇒ ∀x. P (SNOC x l)) ⇒ ∀l. P l
SNOC_Axiom
⊢ ∀e f. ∃fn. fn [] = e ∧ ∀x l. fn (SNOC x l) = f x l (fn l)
REVERSE_SNOC
⊢ ∀x l. REVERSE (SNOC x l) = x::REVERSE l
REVERSE_SNOC_DEF
⊢ REVERSE [] = [] ∧ ∀x l. REVERSE (x::l) = SNOC x (REVERSE l)
SNOC_11
⊢ ∀x y a b. SNOC x y = SNOC a b ⇔ x = a ∧ y = b
MEM_SNOC
⊢ ∀y x l. MEM y (SNOC x l) ⇔ y = x ∨ MEM y l
EXISTS_SNOC
⊢ ∀P x l. EXISTS P (SNOC x l) ⇔ P x ∨ EXISTS P l
EVERY_SNOC
⊢ ∀P x l. EVERY P (SNOC x l) ⇔ EVERY P l ∧ P x
APPEND_SNOC
⊢ ∀l1 x l2. l1 ++ SNOC x l2 = SNOC x (l1 ++ l2)
EL_LENGTH_SNOC
⊢ ∀l x. EL (LENGTH l) (SNOC x l) = x
EL_SNOC
⊢ ∀n l. n < LENGTH l ⇒ ∀x. EL n (SNOC x l) = EL n l
MAP_SNOC
⊢ ∀f x l. MAP f (SNOC x l) = SNOC (f x) (MAP f l)
LIST_TO_SET_SNOC
⊢ LIST_TO_SET (SNOC x ls) = x INSERT LIST_TO_SET ls
SNOC_APPEND
⊢ ∀x l. SNOC x l = l ++ [x]
FRONT_SNOC
⊢ ∀x l. FRONT (SNOC x l) = l
LAST_SNOC
⊢ ∀x l. LAST (SNOC x l) = x
LENGTH_SNOC
⊢ ∀x l. LENGTH (SNOC x l) = SUC (LENGTH l)
isPREFIX_THM
⊢ ([] ≼ l ⇔ T) ∧ (h::t ≼ [] ⇔ F) ∧ (h1::t1 ≼ h2::t2 ⇔ h1 = h2 ∧ t1 ≼ t2)
ITSET_eq_FOLDL_SET_TO_LIST
⊢ ∀s. FINITE s ⇒ ∀f a. ITSET f s a = FOLDL (combin$C f) a (SET_TO_LIST s)
ALL_DISTINCT_SET_TO_LIST
⊢ ∀s. FINITE s ⇒ ALL_DISTINCT (SET_TO_LIST s)
SET_TO_LIST_SING
⊢ SET_TO_LIST {x} = [x]
MEM_SET_TO_LIST
⊢ ∀s. FINITE s ⇒ ∀x. MEM x (SET_TO_LIST s) ⇔ x ∈ s
SET_TO_LIST_IN_MEM
⊢ ∀s. FINITE s ⇒ ∀x. x ∈ s ⇔ MEM x (SET_TO_LIST s)
SET_TO_LIST_CARD
⊢ ∀s. FINITE s ⇒ LENGTH (SET_TO_LIST s) = CARD s
SET_TO_LIST_INV
⊢ ∀s. FINITE s ⇒ LIST_TO_SET (SET_TO_LIST s) = s
SET_TO_LIST_EMPTY
⊢ SET_TO_LIST ∅ = []
SET_TO_LIST_IND
⊢ ∀P. (∀s. (FINITE s ∧ s ≠ ∅ ⇒ P (REST s)) ⇒ P s) ⇒ ∀v. P v
SET_TO_LIST_THM
⊢ FINITE s ⇒
  SET_TO_LIST s = if s = ∅ then [] else CHOICE s::SET_TO_LIST (REST s)
LIST_TO_SET_FILTER
⊢ LIST_TO_SET (FILTER P l) = {x | P x} ∩ LIST_TO_SET l
LIST_TO_SET_MAP
⊢ ∀f l. LIST_TO_SET (MAP f l) = IMAGE f (LIST_TO_SET l)
LIST_TO_SET_THM
⊢ LIST_TO_SET [] = ∅ ∧ LIST_TO_SET (h::t) = h INSERT LIST_TO_SET t
LIST_TO_SET_REVERSE
⊢ ∀ls. LIST_TO_SET (REVERSE ls) = LIST_TO_SET ls
CARD_LIST_TO_SET_ALL_DISTINCT
⊢ ∀ls. CARD (LIST_TO_SET ls) = LENGTH ls ⇒ ALL_DISTINCT ls
ALL_DISTINCT_CARD_LIST_TO_SET
⊢ ∀ls. ALL_DISTINCT ls ⇒ CARD (LIST_TO_SET ls) = LENGTH ls
CARD_LIST_TO_SET
⊢ CARD (LIST_TO_SET ls) ≤ LENGTH ls
INJ_MAP_EQ_IFF
⊢ ∀f l1 l2.
      INJ f (LIST_TO_SET l1 ∪ LIST_TO_SET l2) 𝕌(:β) ⇒
      (MAP f l1 = MAP f l2 ⇔ l1 = l2)
INJ_MAP_EQ
⊢ ∀f l1 l2.
      INJ f (LIST_TO_SET l1 ∪ LIST_TO_SET l2) 𝕌(:β) ∧ MAP f l1 = MAP f l2 ⇒
      l1 = l2
SUM_MAP_MEM_bound
⊢ ∀f x ls. MEM x ls ⇒ f x ≤ SUM (MAP f ls)
SUM_IMAGE_LIST_TO_SET_upper_bound
⊢ ∀ls. ∑ f (LIST_TO_SET ls) ≤ SUM (MAP f ls)
FINITE_LIST_TO_SET
⊢ ∀l. FINITE (LIST_TO_SET l)
LIST_TO_SET_EQ_EMPTY
⊢ (LIST_TO_SET l = ∅ ⇔ l = []) ∧ (∅ = LIST_TO_SET l ⇔ l = [])
UNION_APPEND
⊢ ∀l1 l2. LIST_TO_SET l1 ∪ LIST_TO_SET l2 = LIST_TO_SET (l1 ++ l2)
LIST_TO_SET_APPEND
⊢ ∀l1 l2. LIST_TO_SET (l1 ++ l2) = LIST_TO_SET l1 ∪ LIST_TO_SET l2
LRC_MEM_right
⊢ LRC R (h::t) x y ∧ MEM e t ⇒ ∃z p. R z e ∧ LRC R p x z
LRC_MEM
⊢ LRC R ls x y ∧ MEM e ls ⇒ ∃z t. R e z ∧ LRC R t z y
NRC_LRC
⊢ NRC R n x y ⇔ ∃ls. LRC R ls x y ∧ LENGTH ls = n
ALL_DISTINCT_FLAT_REVERSE
⊢ ∀xs. ALL_DISTINCT (FLAT (REVERSE xs)) ⇔ ALL_DISTINCT (FLAT xs)
ALL_DISTINCT_REVERSE
⊢ ∀l. ALL_DISTINCT (REVERSE l) ⇔ ALL_DISTINCT l
ALL_DISTINCT_ZIP_SWAP
⊢ ∀l1 l2.
      ALL_DISTINCT (ZIP (l1,l2)) ∧ LENGTH l1 = LENGTH l2 ⇒
      ALL_DISTINCT (ZIP (l2,l1))
ALL_DISTINCT_ZIP
⊢ ∀l1 l2. ALL_DISTINCT l1 ∧ LENGTH l1 = LENGTH l2 ⇒ ALL_DISTINCT (ZIP (l1,l2))
ALL_DISTINCT_SING
⊢ ∀x. ALL_DISTINCT [x]
ALL_DISTINCT_APPEND
⊢ ∀l1 l2.
      ALL_DISTINCT (l1 ++ l2) ⇔
      ALL_DISTINCT l1 ∧ ALL_DISTINCT l2 ∧ ∀e. MEM e l1 ⇒ ¬MEM e l2
ALL_DISTINCT_EL_IMP
⊢ ∀l n1 n2.
      ALL_DISTINCT l ∧ n1 < LENGTH l ∧ n2 < LENGTH l ⇒
      (EL n1 l = EL n2 l ⇔ n1 = n2)
EL_ALL_DISTINCT_EL_EQ
⊢ ∀l.
      ALL_DISTINCT l ⇔
      ∀n1 n2. n1 < LENGTH l ∧ n2 < LENGTH l ⇒ (EL n1 l = EL n2 l ⇔ n1 = n2)
ALL_DISTINCT_MAP
⊢ ∀f ls. ALL_DISTINCT (MAP f ls) ⇒ ALL_DISTINCT ls
FILTER_ALL_DISTINCT
⊢ ∀P l. ALL_DISTINCT l ⇒ ALL_DISTINCT (FILTER P l)
ALL_DISTINCT_FILTER
⊢ ∀l. ALL_DISTINCT l ⇔ ∀x. MEM x l ⇒ FILTER ($= x) l = [x]
EVERY2_mono
⊢ (∀x y. R1 x y ⇒ R2 x y) ⇒ LIST_REL R1 l1 l2 ⇒ LIST_REL R2 l1 l2
EVERY2_LENGTH
⊢ ∀P l1 l2. LIST_REL P l1 l2 ⇒ LENGTH l1 = LENGTH l2
EVERY2_EVERY
⊢ ∀l1 l2 f.
      LIST_REL f l1 l2 ⇔
      LENGTH l1 = LENGTH l2 ∧ EVERY (UNCURRY f) (ZIP (l1,l2))
MAP_EQ_EVERY2
⊢ ∀f1 f2 l1 l2.
      MAP f1 l1 = MAP f2 l2 ⇔
      LENGTH l1 = LENGTH l2 ∧ LIST_REL (λx y. f1 x = f2 y) l1 l2
EVERY2_cong
⊢ ∀l1 l1' l2 l2' P P'.
      l1 = l1' ∧ l2 = l2' ∧ (∀x y. MEM x l1' ∧ MEM y l2' ⇒ (P x y ⇔ P' x y)) ⇒
      (LIST_REL P l1 l2 ⇔ LIST_REL P' l1' l2')
FOLDL2_FOLDL
⊢ ∀l1 l2.
      LENGTH l1 = LENGTH l2 ⇒
      ∀f a. FOLDL2 f a l1 l2 = FOLDL (λa. UNCURRY (f a)) a (ZIP (l1,l2))
FOLDL2_cong
⊢ ∀l1 l1' l2 l2' a a' f f'.
      l1 = l1' ∧ l2 = l2' ∧ a = a' ∧
      (∀z b c. MEM b l1' ∧ MEM c l2' ⇒ f z b c = f' z b c) ⇒
      FOLDL2 f a l1 l2 = FOLDL2 f' a' l1' l2'
FOLDL2_def
⊢ (∀f cs c bs b a. FOLDL2 f a (b::bs) (c::cs) = FOLDL2 f (f a b c) bs cs) ∧
  (∀f cs a. FOLDL2 f a [] cs = a) ∧ ∀v7 v6 f a. FOLDL2 f a (v6::v7) [] = a
FOLDL2_ind
⊢ ∀P.
      (∀f a b bs c cs. P f (f a b c) bs cs ⇒ P f a (b::bs) (c::cs)) ∧
      (∀f a cs. P f a [] cs) ∧ (∀f a v6 v7. P f a (v6::v7) []) ⇒
      ∀v v1 v2 v3. P v v1 v2 v3
DROP_NIL
⊢ ∀ls n. DROP n ls = [] ⇔ n ≥ LENGTH ls
MEM_DROP
⊢ ∀x ls n.
      MEM x (DROP n ls) ⇔
      n < LENGTH ls ∧ x = EL n ls ∨ MEM x (DROP (SUC n) ls)
LENGTH_DROP
⊢ ∀n l. LENGTH (DROP n l) = LENGTH l − n
TAKE_DROP
⊢ ∀n l. TAKE n l ++ DROP n l = l
DROP_0
⊢ DROP 0 l = l
TAKE_APPEND2
⊢ ∀n. LENGTH l1 < n ⇒ TAKE n (l1 ++ l2) = l1 ++ TAKE (n − LENGTH l1) l2
TAKE_APPEND1
⊢ ∀n. n ≤ LENGTH l1 ⇒ TAKE n (l1 ++ l2) = TAKE n l1
MAP_TAKE
⊢ ∀f n l. MAP f (TAKE n l) = TAKE n (MAP f l)
LENGTH_TAKE
⊢ ∀n l. n ≤ LENGTH l ⇒ LENGTH (TAKE n l) = n
TAKE_LENGTH_ID
⊢ ∀l. TAKE (LENGTH l) l = l
TAKE_0
⊢ TAKE 0 l = []
DROP_cons
⊢ 0 < n ⇒ DROP n (x::xs) = DROP (n − 1) xs
DROP_nil
⊢ ∀n. DROP n [] = []
TAKE_cons
⊢ 0 < n ⇒ TAKE n (x::xs) = x::TAKE (n − 1) xs
TAKE_nil
⊢ ∀n. TAKE n [] = []
LAST_APPEND_CONS
⊢ ∀h l1 l2. LAST (l1 ++ h::l2) = LAST (h::l2)
LAST_CONS_cond
⊢ LAST (h::t) = if t = [] then h else LAST t
APPEND_FRONT_LAST
⊢ ∀l. l ≠ [] ⇒ FRONT l ++ [LAST l] = l
FRONT_CONS_EQ_NIL
⊢ (∀x xs. FRONT (x::xs) = [] ⇔ xs = []) ∧
  (∀x xs. [] = FRONT (x::xs) ⇔ xs = []) ∧
  ∀x xs. NULL (FRONT (x::xs)) ⇔ NULL xs
LENGTH_FRONT_CONS
⊢ ∀x xs. LENGTH (FRONT (x::xs)) = LENGTH xs
FRONT_CONS
⊢ (∀x. FRONT [x] = []) ∧ ∀x y z. FRONT (x::y::z) = x::FRONT (y::z)
LAST_MAP
⊢ ∀l f. l ≠ [] ⇒ LAST (MAP f l) = f (LAST l)
LAST_EL
⊢ ∀ls. ls ≠ [] ⇒ LAST ls = EL (PRE (LENGTH ls)) ls
LAST_CONS
⊢ (∀x. LAST [x] = x) ∧ ∀x y z. LAST (x::y::z) = LAST (y::z)
FILTER_REVERSE
⊢ ∀l P. FILTER P (REVERSE l) = REVERSE (FILTER P l)
REVERSE_EQ_SING
⊢ REVERSE l = [e] ⇔ l = [e]
REVERSE_EQ_NIL
⊢ REVERSE l = [] ⇔ l = []
LENGTH_REVERSE
⊢ ∀l. LENGTH (REVERSE l) = LENGTH l
MEM_REVERSE
⊢ ∀l x. MEM x (REVERSE l) ⇔ MEM x l
REVERSE_11
⊢ ∀l1 l2. REVERSE l1 = REVERSE l2 ⇔ l1 = l2
REVERSE_REVERSE
⊢ ∀l. REVERSE (REVERSE l) = l
REVERSE_APPEND
⊢ ∀l1 l2. REVERSE (l1 ++ l2) = REVERSE l2 ++ REVERSE l1
LIST_REL_EVERY_ZIP
⊢ ∀R l1 l2.
      LIST_REL R l1 l2 ⇔
      LENGTH l1 = LENGTH l2 ∧ EVERY (UNCURRY R) (ZIP (l1,l2))
SUM_MAP_PLUS_ZIP
⊢ ∀ls1 ls2.
      LENGTH ls1 = LENGTH ls2 ∧ (∀x y. f (x,y) = g x + h y) ⇒
      SUM (MAP f (ZIP (ls1,ls2))) = SUM (MAP g ls1) + SUM (MAP h ls2)
MEM_EL
⊢ ∀l x. MEM x l ⇔ ∃n. n < LENGTH l ∧ x = EL n l
MAP_ZIP
⊢ LENGTH l1 = LENGTH l2 ⇒
  MAP FST (ZIP (l1,l2)) = l1 ∧ MAP SND (ZIP (l1,l2)) = l2 ∧
  MAP (f ∘ FST) (ZIP (l1,l2)) = MAP f l1 ∧
  MAP (g ∘ SND) (ZIP (l1,l2)) = MAP g l2
MAP2_MAP
⊢ ∀l1 l2.
      LENGTH l1 = LENGTH l2 ⇒ ∀f. MAP2 f l1 l2 = MAP (UNCURRY f) (ZIP (l1,l2))
MAP2_ZIP
⊢ ∀l1 l2.
      LENGTH l1 = LENGTH l2 ⇒ ∀f. MAP2 f l1 l2 = MAP (UNCURRY f) (ZIP (l1,l2))
EL_ZIP
⊢ ∀l1 l2 n.
      LENGTH l1 = LENGTH l2 ∧ n < LENGTH l1 ⇒
      EL n (ZIP (l1,l2)) = (EL n l1,EL n l2)
MEM_ZIP
⊢ ∀l1 l2 p.
      LENGTH l1 = LENGTH l2 ⇒
      (MEM p (ZIP (l1,l2)) ⇔ ∃n. n < LENGTH l1 ∧ p = (EL n l1,EL n l2))
ZIP_MAP
⊢ ∀l1 l2 f1 f2.
      LENGTH l1 = LENGTH l2 ⇒
      ZIP (MAP f1 l1,l2) = MAP (λp. (f1 (FST p),SND p)) (ZIP (l1,l2)) ∧
      ZIP (l1,MAP f2 l2) = MAP (λp. (FST p,f2 (SND p))) (ZIP (l1,l2))
UNZIP_ZIP
⊢ ∀l1 l2. LENGTH l1 = LENGTH l2 ⇒ UNZIP (ZIP (l1,l2)) = (l1,l2)
ZIP_UNZIP
⊢ ∀l. ZIP (UNZIP l) = l
LENGTH_UNZIP
⊢ ∀pl.
      LENGTH (FST (UNZIP pl)) = LENGTH pl ∧
      LENGTH (SND (UNZIP pl)) = LENGTH pl
LENGTH_ZIP
⊢ ∀l1 l2.
      LENGTH l1 = LENGTH l2 ⇒
      LENGTH (ZIP (l1,l2)) = LENGTH l1 ∧ LENGTH (ZIP (l1,l2)) = LENGTH l2
UNZIP_MAP
⊢ ∀L. UNZIP L = (MAP FST L,MAP SND L)
UNZIP_THM
⊢ UNZIP [] = ([],[]) ∧
  UNZIP ((x,y)::t) = (let (L1,L2) = UNZIP t in (x::L1,y::L2))
ZIP
⊢ ZIP ([],[]) = [] ∧ ∀x1 l1 x2 l2. ZIP (x1::l1,x2::l2) = (x1,x2)::ZIP (l1,l2)
EVERY_MONOTONIC
⊢ ∀P Q. (∀x. P x ⇒ Q x) ⇒ ∀l. EVERY P l ⇒ EVERY Q l
EVERY_CONG
⊢ ∀l1 l2 P P'.
      l1 = l2 ∧ (∀x. MEM x l2 ⇒ (P x ⇔ P' x)) ⇒ (EVERY P l1 ⇔ EVERY P' l2)
EXISTS_CONG
⊢ ∀l1 l2 P P'.
      l1 = l2 ∧ (∀x. MEM x l2 ⇒ (P x ⇔ P' x)) ⇒ (EXISTS P l1 ⇔ EXISTS P' l2)
MAP2_CONG
⊢ ∀l1 l1' l2 l2' f f'.
      l1 = l1' ∧ l2 = l2' ∧ (∀x y. MEM x l1' ∧ MEM y l2' ⇒ f x y = f' x y) ⇒
      MAP2 f l1 l2 = MAP2 f' l1' l2'
MAP_CONG
⊢ ∀l1 l2 f f'. l1 = l2 ∧ (∀x. MEM x l2 ⇒ f x = f' x) ⇒ MAP f l1 = MAP f' l2
FOLDL_CONG
⊢ ∀l l' b b' f f'.
      l = l' ∧ b = b' ∧ (∀x a. MEM x l' ⇒ f a x = f' a x) ⇒
      FOLDL f b l = FOLDL f' b' l'
FOLDR_CONG
⊢ ∀l l' b b' f f'.
      l = l' ∧ b = b' ∧ (∀x a. MEM x l' ⇒ f x a = f' x a) ⇒
      FOLDR f b l = FOLDR f' b' l'
list_size_cong
⊢ ∀M N f f'.
      M = N ∧ (∀x. MEM x N ⇒ f x = f' x) ⇒ list_size f M = list_size f' N
LIST_REL_SPLIT2
⊢ ∀xs1 zs.
      LIST_REL P zs (xs1 ++ xs2) ⇔
      ∃ys1 ys2. zs = ys1 ++ ys2 ∧ LIST_REL P ys1 xs1 ∧ LIST_REL P ys2 xs2
LIST_REL_SPLIT1
⊢ ∀xs1 zs.
      LIST_REL P (xs1 ++ xs2) zs ⇔
      ∃ys1 ys2. zs = ys1 ++ ys2 ∧ LIST_REL P xs1 ys1 ∧ LIST_REL P xs2 ys2
LIST_REL_LENGTH
⊢ ∀x y. LIST_REL R x y ⇒ LENGTH x = LENGTH y
LIST_REL_MAP2
⊢ LIST_REL (λa b. R a b) l1 (MAP f l2) ⇔ LIST_REL (λa b. R a (f b)) l1 l2
LIST_REL_MAP1
⊢ LIST_REL R (MAP f l1) l2 ⇔ LIST_REL (R ∘ f) l1 l2
LIST_REL_CONJ
⊢ LIST_REL (λa b. P a b ∧ Q a b) l1 l2 ⇔
  LIST_REL (λa b. P a b) l1 l2 ∧ LIST_REL (λa b. Q a b) l1 l2
LIST_REL_CONS2
⊢ LIST_REL R xs (h::t) ⇔ ∃h' t'. xs = h'::t' ∧ R h' h ∧ LIST_REL R t' t
LIST_REL_CONS1
⊢ LIST_REL R (h::t) xs ⇔ ∃h' t'. xs = h'::t' ∧ R h h' ∧ LIST_REL R t t'
LIST_REL_NIL
⊢ (LIST_REL R [] y ⇔ y = []) ∧ (LIST_REL R x [] ⇔ x = [])
LIST_REL_mono
⊢ (∀x y. R1 x y ⇒ R2 x y) ⇒ LIST_REL R1 l1 l2 ⇒ LIST_REL R2 l1 l2
LIST_REL_def
⊢ (LIST_REL R [] [] ⇔ T) ∧ (LIST_REL R (a::as) [] ⇔ F) ∧
  (LIST_REL R [] (b::bs) ⇔ F) ∧
  (LIST_REL R (a::as) (b::bs) ⇔ R a b ∧ LIST_REL R as bs)
WF_LIST_PRED
⊢ WF (λL1 L2. ∃h. L2 = h::L1)
NULL_FILTER
⊢ ∀P ls. NULL (FILTER P ls) ⇔ ∀x. MEM x ls ⇒ ¬P x
SUM_eq_0
⊢ ∀ls. SUM ls = 0 ⇔ ∀x. MEM x ls ⇒ x = 0
EL_simp_restricted
⊢ EL (NUMERAL (BIT1 n)) (l::ls) = EL (PRE (NUMERAL (BIT1 n))) ls ∧
  EL (NUMERAL (BIT2 n)) (l::ls) = EL (NUMERAL (BIT1 n)) ls
EL_restricted
⊢ EL 0 = HD ∧ EL (SUC n) (l::ls) = EL n ls
EL_simp
⊢ EL (NUMERAL (BIT1 n)) l = EL (PRE (NUMERAL (BIT1 n))) (TL l) ∧
  EL (NUMERAL (BIT2 n)) l = EL (NUMERAL (BIT1 n)) (TL l)
EL_compute
⊢ ∀n. EL n l = if n = 0 then HD l else EL (PRE n) (TL l)
NOT_NULL_MEM
⊢ ∀l. ¬NULL l ⇔ ∃e. MEM e l
FILTER_COND_REWRITE
⊢ FILTER P [] = [] ∧ (∀h. P h ⇒ FILTER P (h::l) = h::FILTER P l) ∧
  ∀h. ¬P h ⇒ FILTER P (h::l) = FILTER P l
EVERY_FILTER_IMP
⊢ ∀P1 P2 l. EVERY P1 l ⇒ EVERY P1 (FILTER P2 l)
EVERY_FILTER
⊢ ∀P1 P2 l. EVERY P1 (FILTER P2 l) ⇔ EVERY (λx. P2 x ⇒ P1 x) l
FILTER_EQ_APPEND
⊢ ∀P l l1 l2.
      FILTER P l = l1 ++ l2 ⇔
      ∃l3 l4. l = l3 ++ l4 ∧ FILTER P l3 = l1 ∧ FILTER P l4 = l2
MEM
⊢ (∀x. MEM x [] ⇔ F) ∧ ∀x h t. MEM x (h::t) ⇔ x = h ∨ MEM x t
FILTER_APPEND_DISTRIB
⊢ ∀P L M. FILTER P (L ++ M) = FILTER P L ++ FILTER P M
FILTER_EQ_CONS
⊢ ∀P l h lr.
      FILTER P l = h::lr ⇔
      ∃l1 l2. l = l1 ++ [h] ++ l2 ∧ FILTER P l1 = [] ∧ FILTER P l2 = lr ∧ P h
FILTER_NEQ_ID
⊢ ∀P l. FILTER P l ≠ l ⇔ ∃x. MEM x l ∧ ¬P x
FILTER_EQ_ID
⊢ ∀P l. FILTER P l = l ⇔ EVERY P l
FILTER_NEQ_NIL
⊢ ∀P l. FILTER P l ≠ [] ⇔ ∃x. MEM x l ∧ P x
FILTER_EQ_NIL
⊢ ∀P l. FILTER P l = [] ⇔ EVERY (λx. ¬P x) l
LENGTH_TL
⊢ ∀l. 0 < LENGTH l ⇒ LENGTH (TL l) = LENGTH l − 1
FOLDR_CONS
⊢ ∀f ls a. FOLDR (λx y. f x::y) a ls = MAP f ls ++ a
FOLDL_EQ_FOLDR
⊢ ∀f l e. ASSOC f ∧ COMM f ⇒ FOLDL f e l = FOLDR f e l
LIST_EQ
⊢ ∀l1 l2.
      LENGTH l1 = LENGTH l2 ∧ (∀x. x < LENGTH l1 ⇒ EL x l1 = EL x l2) ⇒
      l1 = l2
LIST_EQ_REWRITE
⊢ ∀l1 l2.
      l1 = l2 ⇔ LENGTH l1 = LENGTH l2 ∧ ∀x. x < LENGTH l1 ⇒ EL x l1 = EL x l2
MEM_SPLIT
⊢ ∀x l. MEM x l ⇔ ∃l1 l2. l = l1 ++ x::l2
APPEND_EQ_SELF
⊢ (∀l1 l2. l1 ++ l2 = l1 ⇔ l2 = []) ∧ (∀l1 l2. l1 ++ l2 = l2 ⇔ l1 = []) ∧
  (∀l1 l2. l1 = l1 ++ l2 ⇔ l2 = []) ∧ ∀l1 l2. l2 = l1 ++ l2 ⇔ l1 = []
APPEND_11_LENGTH
⊢ (∀l1 l2 l1' l2'.
       LENGTH l1 = LENGTH l1' ⇒ (l1 ++ l2 = l1' ++ l2' ⇔ l1 = l1' ∧ l2 = l2')) ∧
  ∀l1 l2 l1' l2'.
      LENGTH l2 = LENGTH l2' ⇒ (l1 ++ l2 = l1' ++ l2' ⇔ l1 = l1' ∧ l2 = l2')
APPEND_LENGTH_EQ
⊢ ∀l1 l1'.
      LENGTH l1 = LENGTH l1' ⇒
      ∀l2 l2'.
          LENGTH l2 = LENGTH l2' ⇒
          (l1 ++ l2 = l1' ++ l2' ⇔ l1 = l1' ∧ l2 = l2')
APPEND_11
⊢ (∀l1 l2 l3. l1 ++ l2 = l1 ++ l3 ⇔ l2 = l3) ∧
  ∀l1 l2 l3. l2 ++ l1 = l3 ++ l1 ⇔ l2 = l3
APPEND_EQ_SING
⊢ l1 ++ l2 = [e] ⇔ l1 = [e] ∧ l2 = [] ∨ l1 = [] ∧ l2 = [e]
MAP_EQ_APPEND
⊢ MAP f l = l1 ++ l2 ⇔
  ∃l10 l20. l = l10 ++ l20 ∧ l1 = MAP f l10 ∧ l2 = MAP f l20
APPEND_eq_NIL
⊢ (∀l1 l2. [] = l1 ++ l2 ⇔ l1 = [] ∧ l2 = []) ∧
  ∀l1 l2. l1 ++ l2 = [] ⇔ l1 = [] ∧ l2 = []
CONS_ACYCLIC
⊢ ∀l x. l ≠ x::l ∧ x::l ≠ l
LENGTH_EQ_NIL
⊢ ∀P. (∀l. LENGTH l = 0 ⇒ P l) ⇔ P []
LENGTH_EQ_NUM_compute
⊢ (∀l. LENGTH l = 0 ⇔ l = []) ∧
  (∀l n.
       LENGTH l = NUMERAL (BIT1 n) ⇔
       ∃h l'. LENGTH l' = NUMERAL (BIT1 n) − 1 ∧ l = h::l') ∧
  (∀l n.
       LENGTH l = NUMERAL (BIT2 n) ⇔
       ∃h l'. LENGTH l' = NUMERAL (BIT1 n) ∧ l = h::l') ∧
  ∀l n1 n2.
      LENGTH l = n1 + n2 ⇔
      ∃l1 l2. LENGTH l1 = n1 ∧ LENGTH l2 = n2 ∧ l = l1 ++ l2
LENGTH_EQ_NUM
⊢ (∀l. LENGTH l = 0 ⇔ l = []) ∧
  (∀l n. LENGTH l = SUC n ⇔ ∃h l'. LENGTH l' = n ∧ l = h::l') ∧
  ∀l n1 n2.
      LENGTH l = n1 + n2 ⇔
      ∃l1 l2. LENGTH l1 = n1 ∧ LENGTH l2 = n2 ∧ l = l1 ++ l2
LENGTH_EQ_SUM
⊢ ∀l n1 n2.
      LENGTH l = n1 + n2 ⇔
      ∃l1 l2. LENGTH l1 = n1 ∧ LENGTH l2 = n2 ∧ l = l1 ++ l2
LENGTH_EQ_CONS
⊢ ∀P n. (∀l. LENGTH l = SUC n ⇒ P l) ⇔ ∀l. LENGTH l = n ⇒ (λl. ∀x. P (x::l)) l
LENGTH_CONS
⊢ ∀l n. LENGTH l = SUC n ⇔ ∃h l'. LENGTH l' = n ∧ l = h::l'
NULL_LENGTH
⊢ ∀l. NULL l ⇔ LENGTH l = 0
NULL_EQ
⊢ ∀l. NULL l ⇔ l = []
LENGTH_NIL_SYM
⊢ 0 = LENGTH l ⇔ l = []
LENGTH_NIL
⊢ ∀l. LENGTH l = 0 ⇔ l = []
MEM_MAP
⊢ ∀l f x. MEM x (MAP f l) ⇔ ∃y. x = f y ∧ MEM y l
NOT_EXISTS
⊢ ∀P l. ¬EXISTS P l ⇔ EVERY ($~ ∘ P) l
NOT_EVERY
⊢ ∀P l. ¬EVERY P l ⇔ EXISTS ($~ ∘ P) l
EXISTS_APPEND
⊢ ∀P l1 l2. EXISTS P (l1 ++ l2) ⇔ EXISTS P l1 ∨ EXISTS P l2
EVERY_APPEND
⊢ ∀P l1 l2. EVERY P (l1 ++ l2) ⇔ EVERY P l1 ∧ EVERY P l2
FLAT_compute
⊢ FLAT [] = [] ∧ FLAT ([]::t) = FLAT t ∧ FLAT ((h::t1)::t2) = h::FLAT (t1::t2)
FLAT_APPEND
⊢ ∀l1 l2. FLAT (l1 ++ l2) = FLAT l1 ++ FLAT l2
MEM_FLAT
⊢ ∀x L. MEM x (FLAT L) ⇔ ∃l. MEM l L ∧ MEM x l
MEM_FILTER
⊢ ∀P L x. MEM x (FILTER P L) ⇔ P x ∧ MEM x L
MEM_APPEND
⊢ ∀e l1 l2. MEM e (l1 ++ l2) ⇔ MEM e l1 ∨ MEM e l2
EXISTS_NOT_EVERY
⊢ ∀P l. EXISTS P l ⇔ ¬EVERY (λx. ¬P x) l
EVERY_NOT_EXISTS
⊢ ∀P l. EVERY P l ⇔ ¬EXISTS (λx. ¬P x) l
MONO_EXISTS
⊢ (∀x. P x ⇒ Q x) ⇒ EXISTS P l ⇒ EXISTS Q l
EXISTS_SIMP
⊢ ∀c l. EXISTS (λx. c) l ⇔ l ≠ [] ∧ c
EXISTS_MAP
⊢ ∀P f l. EXISTS P (MAP f l) ⇔ EXISTS (λx. P (f x)) l
EXISTS_MEM
⊢ ∀P l. EXISTS P l ⇔ ∃e. MEM e l ∧ P e
MONO_EVERY
⊢ (∀x. P x ⇒ Q x) ⇒ EVERY P l ⇒ EVERY Q l
EVERY_SIMP
⊢ ∀c l. EVERY (λx. c) l ⇔ l = [] ∨ c
EVERY_MAP
⊢ ∀P f l. EVERY P (MAP f l) ⇔ EVERY (λx. P (f x)) l
EVERY_MEM
⊢ ∀P l. EVERY P l ⇔ ∀e. MEM e l ⇒ P e
EVERY_CONJ
⊢ ∀P Q l. EVERY (λx. P x ∧ Q x) l ⇔ EVERY P l ∧ EVERY Q l
EVERY_EL
⊢ ∀l P. EVERY P l ⇔ ∀n. n < LENGTH l ⇒ P (EL n l)
MAP_TL
⊢ ∀l f. ¬NULL l ⇒ MAP f (TL l) = TL (MAP f l)
EL_APPEND_EQN
⊢ ∀l1 l2 n.
      EL n (l1 ++ l2) = if n < LENGTH l1 then EL n l1
      else EL (n − LENGTH l1) l2
EL_MAP
⊢ ∀n l. n < LENGTH l ⇒ ∀f. EL n (MAP f l) = f (EL n l)
MAP_MAP_o
⊢ ∀f g l. MAP f (MAP g l) = MAP (f ∘ g) l
MAP_o
⊢ ∀f g. MAP (f ∘ g) = MAP f ∘ MAP g
MAP_EQ_f
⊢ ∀f1 f2 l. MAP f1 l = MAP f2 l ⇔ ∀e. MEM e l ⇒ f1 e = f2 e
MAP_EQ_SING
⊢ MAP f l = [x] ⇔ ∃x0. l = [x0] ∧ x = f x0
MAP_EQ_CONS
⊢ MAP f l = h::t ⇔ ∃x0 t0. l = x0::t0 ∧ h = f x0 ∧ t = MAP f t0
MAP_EQ_NIL
⊢ ∀l f. (MAP f l = [] ⇔ l = []) ∧ ([] = MAP f l ⇔ l = [])
LENGTH_MAP
⊢ ∀l f. LENGTH (MAP f l) = LENGTH l
MAP_ID
⊢ MAP (λx. x) l = l ∧ MAP I l = l
MAP_APPEND
⊢ ∀f l1 l2. MAP f (l1 ++ l2) = MAP f l1 ++ MAP f l2
LENGTH_APPEND
⊢ ∀l1 l2. LENGTH (l1 ++ l2) = LENGTH l1 + LENGTH l2
APPEND_ASSOC
⊢ ∀l1 l2 l3. l1 ++ (l2 ++ l3) = l1 ++ l2 ++ l3
APPEND_NIL
⊢ ∀l. l ++ [] = l
CONS
⊢ ∀l. ¬NULL l ⇒ HD l::TL l = l
EQ_LIST
⊢ ∀h1 h2. h1 = h2 ⇒ ∀l1 l2. l1 = l2 ⇒ h1::l1 = h2::l2
NOT_EQ_LIST
⊢ ∀h1 h2. h1 ≠ h2 ⇒ ∀l1 l2. h1::l1 ≠ h2::l2
LIST_NOT_EQ
⊢ ∀l1 l2. l1 ≠ l2 ⇒ ∀h1 h2. h1::l1 ≠ h2::l2
NOT_CONS_NIL
⊢ ∀a1 a0. a0::a1 ≠ []
NOT_NIL_CONS
⊢ ∀a1 a0. [] ≠ a0::a1
CONS_11
⊢ ∀a0 a1 a0' a1'. a0::a1 = a0'::a1' ⇔ a0 = a0' ∧ a1 = a1'
list_case_compute
⊢ ∀l. list_CASE l b f = if NULL l then b else f (HD l) (TL l)
list_nchotomy
⊢ ∀l. l = [] ∨ ∃h t. l = h::t
list_distinct
⊢ ∀a1 a0. [] ≠ a0::a1
list_11
⊢ ∀a0 a1 a0' a1'. a0::a1 = a0'::a1' ⇔ a0 = a0' ∧ a1 = a1'
datatype_list
⊢ DATATYPE (list [] CONS)
list_case_cong
⊢ ∀M M' v f.
      M = M' ∧ (M' = [] ⇒ v = v') ∧ (∀a0 a1. M' = a0::a1 ⇒ f a0 a1 = f' a0 a1) ⇒
      list_CASE M v f = list_CASE M' v' f'
list_case_eq
⊢ list_CASE x v f = v' ⇔ x = [] ∧ v = v' ∨ ∃a l. x = a::l ∧ f a l = v'
list_Axiom_old
⊢ ∀x f. ∃!fn1. fn1 [] = x ∧ ∀h t. fn1 (h::t) = f (fn1 t) h t
LIST_TO_SET
⊢ LIST_TO_SET [] = ∅ ∧ LIST_TO_SET (h::t) = h INSERT LIST_TO_SET t
MAP2_ind
⊢ ∀P.
      (∀f h1 t1 h2 t2. P f t1 t2 ⇒ P f (h1::t1) (h2::t2)) ∧ (∀f y. P f [] y) ∧
      (∀f v4 v5. P f (v4::v5) []) ⇒
      ∀v v1 v2. P v v1 v2
MAP2_DEF
⊢ (∀t2 t1 h2 h1 f. MAP2 f (h1::t1) (h2::t2) = f h1 h2::MAP2 f t1 t2) ∧
  (∀y f. MAP2 f [] y = []) ∧ ∀v5 v4 f. MAP2 f (v4::v5) [] = []
MAP2
⊢ (∀f. MAP2 f [] [] = []) ∧
  ∀f h1 t1 h2 t2. MAP2 f (h1::t1) (h2::t2) = f h1 h2::MAP2 f t1 t2
MAP2_NIL
⊢ MAP2 f x [] = []
LENGTH_MAP2
⊢ ∀xs ys. LENGTH (MAP2 f xs ys) = MIN (LENGTH xs) (LENGTH ys)
EL_MAP2
⊢ ∀ts tt n.
      n < MIN (LENGTH ts) (LENGTH tt) ⇒
      EL n (MAP2 f ts tt) = f (EL n ts) (EL n tt)
NULL
⊢ NULL [] ∧ ∀h t. ¬NULL (h::t)
list_INDUCT0
⊢ ∀P. P [] ∧ (∀l. P l ⇒ ∀a. P (a::l)) ⇒ ∀l. P l
list_INDUCT
⊢ ∀P. P [] ∧ (∀t. P t ⇒ ∀h. P (h::t)) ⇒ ∀l. P l
list_Axiom
⊢ ∀f0 f1. ∃fn. fn [] = f0 ∧ ∀a0 a1. fn (a0::a1) = f1 a0 a1 (fn a1)
list_induction
⊢ ∀P. P [] ∧ (∀t. P t ⇒ ∀h. P (h::t)) ⇒ ∀l. P l
LIST_REL_EL_EQN
⊢ ∀R l1 l2.
      LIST_REL R l1 l2 ⇔
      LENGTH l1 = LENGTH l2 ∧ ∀n. n < LENGTH l1 ⇒ R (EL n l1) (EL n l2)
LIST_REL_cases
⊢ ∀R a0 a1.
      LIST_REL R a0 a1 ⇔
      a0 = [] ∧ a1 = [] ∨
      ∃h1 h2 t1 t2. a0 = h1::t1 ∧ a1 = h2::t2 ∧ R h1 h2 ∧ LIST_REL R t1 t2
LIST_REL_strongind
⊢ ∀R LIST_REL'.
      LIST_REL' [] [] ∧
      (∀h1 h2 t1 t2.
           R h1 h2 ∧ LIST_REL R t1 t2 ∧ LIST_REL' t1 t2 ⇒
           LIST_REL' (h1::t1) (h2::t2)) ⇒
      ∀a0 a1. LIST_REL R a0 a1 ⇒ LIST_REL' a0 a1
LIST_REL_ind
⊢ ∀R LIST_REL'.
      LIST_REL' [] [] ∧
      (∀h1 h2 t1 t2. R h1 h2 ∧ LIST_REL' t1 t2 ⇒ LIST_REL' (h1::t1) (h2::t2)) ⇒
      ∀a0 a1. LIST_REL R a0 a1 ⇒ LIST_REL' a0 a1
LIST_REL_rules
⊢ ∀R.
      LIST_REL R [] [] ∧
      ∀h1 h2 t1 t2. R h1 h2 ∧ LIST_REL R t1 t2 ⇒ LIST_REL R (h1::t1) (h2::t2)
list_CASES
⊢ ∀l. l = [] ∨ ∃h t. l = h::t
FORALL_LIST
⊢ (∀l. P l) ⇔ P [] ∧ ∀h t. P (h::t)
MEM_SPLIT_APPEND_first
⊢ MEM e l ⇔ ∃pfx sfx. l = pfx ++ [e] ++ sfx ∧ ¬MEM e pfx
MEM_SPLIT_APPEND_last
⊢ MEM e l ⇔ ∃pfx sfx. l = pfx ++ [e] ++ sfx ∧ ¬MEM e sfx
APPEND_EQ_APPEND
⊢ l1 ++ l2 = m1 ++ m2 ⇔
  (∃l. l1 = m1 ++ l ∧ m2 = l ++ l2) ∨ ∃l. m1 = l1 ++ l ∧ l2 = l ++ m2
APPEND_EQ_CONS
⊢ l1 ++ l2 = h::t ⇔ l1 = [] ∧ l2 = h::t ∨ ∃lt. l1 = h::lt ∧ t = lt ++ l2
APPEND_EQ_APPEND_MID
⊢ l1 ++ [e] ++ l2 = m1 ++ m2 ⇔
  (∃l. m1 = l1 ++ [e] ++ l ∧ l2 = l ++ m2) ∨
  ∃l. l1 = m1 ++ l ∧ m2 = l ++ [e] ++ l2
LUPDATE_NIL
⊢ ∀xs n x. LUPDATE x n xs = [] ⇔ xs = []
LUPDATE_SEM
⊢ (∀e n l. LENGTH (LUPDATE e n l) = LENGTH l) ∧
  ∀e n l p. p < LENGTH l ⇒ EL p (LUPDATE e n l) = if p = n then e else EL p l
EL_LUPDATE
⊢ ∀ys x i k.
      EL i (LUPDATE x k ys) = if i = k ∧ k < LENGTH ys then x else EL i ys
LENGTH_LUPDATE
⊢ ∀x n ys. LENGTH (LUPDATE x n ys) = LENGTH ys
LUPDATE_LENGTH
⊢ ∀xs x y ys. LUPDATE x (LENGTH xs) (xs ++ y::ys) = xs ++ x::ys
LUPDATE_SNOC
⊢ ∀ys k x y.
      LUPDATE x k (SNOC y ys) = if k = LENGTH ys then SNOC x ys
      else SNOC y (LUPDATE x k ys)
MEM_LUPDATE_E
⊢ ∀l x y i. MEM x (LUPDATE y i l) ⇒ x = y ∨ MEM x l
MEM_LUPDATE
⊢ ∀l x y i.
      MEM x (LUPDATE y i l) ⇔
      i < LENGTH l ∧ x = y ∨ ∃j. j < LENGTH l ∧ i ≠ j ∧ EL j l = x
LUPDATE_compute
⊢ (∀e n. LUPDATE e n [] = []) ∧ (∀e x l. LUPDATE e 0 (x::l) = e::l) ∧
  (∀e n x l.
       LUPDATE e (NUMERAL (BIT1 n)) (x::l) =
       x::LUPDATE e (NUMERAL (BIT1 n) − 1) l) ∧
  ∀e n x l.
      LUPDATE e (NUMERAL (BIT2 n)) (x::l) = x::LUPDATE e (NUMERAL (BIT1 n)) l
LUPDATE_MAP
⊢ ∀x n l f. MAP f (LUPDATE x n l) = LUPDATE (f x) n (MAP f l)
splitAtPki_APPEND
⊢ ∀l1 l2 P k.
      EVERYi (λi. $~ ∘ P i) l1 ∧ (0 < LENGTH l2 ⇒ P (LENGTH l1) (HD l2)) ⇒
      splitAtPki P k (l1 ++ l2) = k l1 l2
splitAtPki_EQN
⊢ splitAtPki P k l =
  case OLEAST i. i < LENGTH l ∧ P i (EL i l) of
    NONE => k l []
  | SOME i => k (TAKE i l) (DROP i l)
TAKE_LENGTH_TOO_LONG
⊢ ∀l n. LENGTH l ≤ n ⇒ TAKE n l = l
DROP_LENGTH_TOO_LONG
⊢ ∀l n. LENGTH l ≤ n ⇒ DROP n l = []
TAKE_splitAtPki
⊢ TAKE n l = splitAtPki (K ∘ $= n) K l
DROP_splitAtPki
⊢ DROP n l = splitAtPki (K ∘ $= n) (K I) l
LIST_BIND_THM
⊢ LIST_BIND [] f = [] ∧ LIST_BIND (h::t) f = f h ++ LIST_BIND t f
LIST_BIND_ID
⊢ LIST_BIND l (λx. x) = FLAT l ∧ LIST_BIND l I = FLAT l
LIST_BIND_APPEND
⊢ LIST_BIND (l1 ++ l2) f = LIST_BIND l1 f ++ LIST_BIND l2 f
LIST_BIND_MAP
⊢ LIST_BIND (MAP f l) g = LIST_BIND l (g ∘ f)
MAP_LIST_BIND
⊢ MAP f (LIST_BIND l g) = LIST_BIND l (MAP f ∘ g)
LIST_BIND_LIST_BIND
⊢ LIST_BIND (LIST_BIND l g) f = LIST_BIND l (combin$C LIST_BIND f ∘ g)
SINGL_LIST_APPLY_L
⊢ LIST_BIND [x] f = f x
SINGL_LIST_APPLY_R
⊢ LIST_BIND l (λx. [x]) = l
SINGL_APPLY_MAP
⊢ [f] <*> l = MAP f l
SINGL_SINGL_APPLY
⊢ [f] <*> [x] = [f x]
SINGL_APPLY_PERMUTE
⊢ fs <*> [x] = [(λf. f x)] <*> fs
MAP_FLAT
⊢ MAP f (FLAT l) = FLAT (MAP (MAP f) l)
LIST_APPLY_o
⊢ [$o] <*> fs <*> gs <*> xs = fs <*> (gs <*> xs)
SHORTLEX_THM
⊢ (¬SHORTLEX R [] [] ∧ ¬SHORTLEX R (h1::t1) []) ∧ SHORTLEX R [] (h2::t2) ∧
  (SHORTLEX R (h1::t1) (h2::t2) ⇔
   LENGTH t1 < LENGTH t2 ∨
   LENGTH t1 = LENGTH t2 ∧ (R h1 h2 ∨ h1 = h2 ∧ SHORTLEX R t1 t2))
SHORTLEX_MONO
⊢ (∀x y. R1 x y ⇒ R2 x y) ⇒ SHORTLEX R1 x y ⇒ SHORTLEX R2 x y
SHORTLEX_NIL2
⊢ ¬SHORTLEX R l []
SHORTLEX_transitive
⊢ transitive R ⇒ transitive (SHORTLEX R)
LENGTH_LT_SHORTLEX
⊢ ∀l1 l2. LENGTH l1 < LENGTH l2 ⇒ SHORTLEX R l1 l2
SHORTLEX_LENGTH_LE
⊢ ∀l1 l2. SHORTLEX R l1 l2 ⇒ LENGTH l1 ≤ LENGTH l2
SHORTLEX_total
⊢ total (RC R) ⇒ total (RC (SHORTLEX R))
WF_SHORTLEX_same_lengths
⊢ WF R ⇒
  ∀l s.
      (∀d. d ∈ s ⇒ LENGTH d = l) ∧ (∃a. a ∈ s) ⇒
      ∃b. b ∈ s ∧ ∀c. SHORTLEX R c b ⇒ c ∉ s
WF_SHORTLEX
⊢ WF R ⇒ WF (SHORTLEX R)
LLEX_THM
⊢ (¬LLEX R [] [] ∧ ¬LLEX R (h1::t1) []) ∧ LLEX R [] (h2::t2) ∧
  (LLEX R (h1::t1) (h2::t2) ⇔ R h1 h2 ∨ h1 = h2 ∧ LLEX R t1 t2)
LLEX_MONO
⊢ (∀x y. R1 x y ⇒ R2 x y) ⇒ LLEX R1 x y ⇒ LLEX R2 x y
LLEX_CONG
⊢ ∀R l1 l2 R' l1' l2'.
      l1 = l1' ∧ l2 = l2' ∧ (∀a b. MEM a l1' ∧ MEM b l2' ⇒ (R a b ⇔ R' a b)) ⇒
      (LLEX R l1 l2 ⇔ LLEX R' l1' l2')
LLEX_NIL2
⊢ ¬LLEX R l []
LLEX_transitive
⊢ transitive R ⇒ transitive (LLEX R)
LLEX_total
⊢ total (RC R) ⇒ total (RC (LLEX R))
LLEX_not_WF
⊢ (∃a b. R a b) ⇒ ¬WF (LLEX R)
LLEX_EL_THM
⊢ ∀R l1 l2.
      LLEX R l1 l2 ⇔
      ∃n.
          n ≤ LENGTH l1 ∧ n < LENGTH l2 ∧ TAKE n l1 = TAKE n l2 ∧
          (n < LENGTH l1 ⇒ R (EL n l1) (EL n l2))
nub_set
⊢ ∀l. LIST_TO_SET (nub l) = LIST_TO_SET l
all_distinct_nub
⊢ ∀l. ALL_DISTINCT (nub l)
nub_append
⊢ ∀l1 l2. nub (l1 ++ l2) = nub (FILTER (λx. ¬MEM x l2) l1) ++ nub l2
list_to_set_diff
⊢ ∀l1 l2.
      LIST_TO_SET l2 DIFF LIST_TO_SET l1 =
      LIST_TO_SET (FILTER (λx. ¬MEM x l1) l2)
length_nub_append
⊢ ∀l1 l2.
      LENGTH (nub (l1 ++ l2)) =
      LENGTH (nub l1) + LENGTH (nub (FILTER (λx. ¬MEM x l1) l2))
ALL_DISTINCT_DROP
⊢ ∀ls n. ALL_DISTINCT ls ⇒ ALL_DISTINCT (DROP n ls)
EXISTS_LIST_EQ_MAP
⊢ ∀ls f. EVERY (λx. ∃y. x = f y) ls ⇒ ∃l. ls = MAP f l
LIST_TO_SET_FLAT
⊢ ∀ls. LIST_TO_SET (FLAT ls) = BIGUNION (LIST_TO_SET (MAP LIST_TO_SET ls))
MEM_APPEND_lemma
⊢ ∀a b c d x.
      a ++ [x] ++ b = c ++ [x] ++ d ∧ ¬MEM x b ∧ ¬MEM x a ⇒ a = c ∧ b = d
EVERY2_REVERSE
⊢ ∀R l1 l2. LIST_REL R l1 l2 ⇒ LIST_REL R (REVERSE l1) (REVERSE l2)
SUM_MAP_PLUS
⊢ ∀f g ls. SUM (MAP (λx. f x + g x) ls) = SUM (MAP f ls) + SUM (MAP g ls)
TAKE_LENGTH_ID_rwt
⊢ ∀l m. m = LENGTH l ⇒ TAKE m l = l
ZIP_DROP
⊢ ∀a b n.
      n ≤ LENGTH a ∧ LENGTH a = LENGTH b ⇒
      ZIP (DROP n a,DROP n b) = DROP n (ZIP (a,b))
GENLIST_EL
⊢ ∀ls f n. n = LENGTH ls ∧ (∀i. i < n ⇒ f i = EL i ls) ⇒ GENLIST f n = ls
EVERY2_trans
⊢ (∀x y z. R x y ∧ R y z ⇒ R x z) ⇒
  ∀x y z. LIST_REL R x y ∧ LIST_REL R y z ⇒ LIST_REL R x z
EVERY2_sym
⊢ (∀x y. R1 x y ⇒ R2 y x) ⇒ ∀x y. LIST_REL R1 x y ⇒ LIST_REL R2 y x
EVERY2_LUPDATE_same
⊢ ∀P l1 l2 v1 v2 n.
      P v1 v2 ∧ LIST_REL P l1 l2 ⇒
      LIST_REL P (LUPDATE v1 n l1) (LUPDATE v2 n l2)
EVERY2_refl
⊢ (∀x. MEM x ls ⇒ R x x) ⇒ LIST_REL R ls ls
EVERY2_THM
⊢ (∀P ys. LIST_REL P [] ys ⇔ ys = []) ∧
  (∀P yys x xs.
       LIST_REL P (x::xs) yys ⇔ ∃y ys. yys = y::ys ∧ P x y ∧ LIST_REL P xs ys) ∧
  (∀P xs. LIST_REL P xs [] ⇔ xs = []) ∧
  ∀P xxs y ys.
      LIST_REL P xxs (y::ys) ⇔ ∃x xs. xxs = x::xs ∧ P x y ∧ LIST_REL P xs ys
LIST_REL_trans
⊢ ∀l1 l2 l3.
      (∀n.
           n < LENGTH l1 ∧ R (EL n l1) (EL n l2) ∧ R (EL n l2) (EL n l3) ⇒
           R (EL n l1) (EL n l3)) ∧ LIST_REL R l1 l2 ∧ LIST_REL R l2 l3 ⇒
      LIST_REL R l1 l3
SWAP_REVERSE
⊢ ∀l1 l2. l1 = REVERSE l2 ⇔ l2 = REVERSE l1
SWAP_REVERSE_SYM
⊢ ∀l1 l2. REVERSE l1 = l2 ⇔ l1 = REVERSE l2
BIGUNION_IMAGE_set_SUBSET
⊢ BIGUNION (IMAGE f (LIST_TO_SET ls)) ⊆ s ⇔ ∀x. MEM x ls ⇒ f x ⊆ s
IMAGE_EL_count_LENGTH
⊢ ∀f ls.
      IMAGE (λn. f (EL n ls)) (count (LENGTH ls)) = IMAGE f (LIST_TO_SET ls)
GENLIST_EL_MAP
⊢ ∀f ls. GENLIST (λn. f (EL n ls)) (LENGTH ls) = MAP f ls
LENGTH_FILTER_LEQ_MONO
⊢ ∀P Q. (∀x. P x ⇒ Q x) ⇒ ∀ls. LENGTH (FILTER P ls) ≤ LENGTH (FILTER Q ls)
LIST_EQ_MAP_PAIR
⊢ ∀l1 l2. MAP FST l1 = MAP FST l2 ∧ MAP SND l1 = MAP SND l2 ⇒ l1 = l2
TAKE_SUM
⊢ ∀n m l. TAKE (n + m) l = TAKE n l ++ TAKE m (DROP n l)
ALL_DISTINCT_FILTER_EL_IMP
⊢ ∀P l n1 n2.
      ALL_DISTINCT (FILTER P l) ∧ n1 < LENGTH l ∧ n2 < LENGTH l ∧
      P (EL n1 l) ∧ EL n1 l = EL n2 l ⇒
      n1 = n2
FLAT_EQ_NIL
⊢ ∀ls. FLAT ls = [] ⇔ EVERY ($= []) ls
ALL_DISTINCT_MAP_INJ
⊢ ∀ls f.
      (∀x y. MEM x ls ∧ MEM y ls ∧ f x = f y ⇒ x = y) ∧ ALL_DISTINCT ls ⇒
      ALL_DISTINCT (MAP f ls)
LENGTH_o_REVERSE
⊢ LENGTH ∘ REVERSE = LENGTH ∧ LENGTH ∘ REVERSE ∘ f = LENGTH ∘ f
REVERSE_o_REVERSE
⊢ REVERSE ∘ REVERSE ∘ f = f
GENLIST_PLUS_APPEND
⊢ GENLIST ($+ a) n1 ++ GENLIST ($+ (n1 + a)) n2 = GENLIST ($+ a) (n1 + n2)
LIST_TO_SET_GENLIST
⊢ ∀f n. LIST_TO_SET (GENLIST f n) = IMAGE f (count n)
MEM_ZIP_MEM_MAP
⊢ LENGTH (FST ps) = LENGTH (SND ps) ∧ MEM p (ZIP ps) ⇒
  MEM (FST p) (FST ps) ∧ MEM (SND p) (SND ps)
DISJOINT_GENLIST_PLUS
⊢ DISJOINT x (LIST_TO_SET (GENLIST ($+ n) (a + b))) ⇒
  DISJOINT x (LIST_TO_SET (GENLIST ($+ n) a)) ∧
  DISJOINT x (LIST_TO_SET (GENLIST ($+ (n + a)) b))
EVERY2_MAP
⊢ (LIST_REL P (MAP f l1) l2 ⇔ LIST_REL (λx y. P (f x) y) l1 l2) ∧
  (LIST_REL Q l1 (MAP g l2) ⇔ LIST_REL (λx y. Q x (g y)) l1 l2)
exists_list_GENLIST
⊢ (∃ls. P ls) ⇔ ∃n f. P (GENLIST f n)
EVERY_MEM_MONO
⊢ ∀P Q l. (∀x. MEM x l ∧ P x ⇒ Q x) ∧ EVERY P l ⇒ EVERY Q l
EVERY2_MEM_MONO
⊢ ∀P Q l1 l2.
      (∀x. MEM x (ZIP (l1,l2)) ∧ UNCURRY P x ⇒ UNCURRY Q x) ∧ LIST_REL P l1 l2 ⇒
      LIST_REL Q l1 l2
mem_exists_set
⊢ ∀x y l. MEM (x,y) l ⇒ ∃z. x = FST z ∧ MEM z l
every_zip_snd
⊢ ∀l1 l2 P.
      LENGTH l1 = LENGTH l2 ⇒
      (EVERY (λx. P (SND x)) (ZIP (l1,l2)) ⇔ EVERY P l2)
every_zip_fst
⊢ ∀l1 l2 P.
      LENGTH l1 = LENGTH l2 ⇒
      (EVERY (λx. P (FST x)) (ZIP (l1,l2)) ⇔ EVERY P l1)
el_append3
⊢ ∀l1 x l2. EL (LENGTH l1) (l1 ++ [x] ++ l2) = x
lupdate_append
⊢ ∀x n l1 l2. n < LENGTH l1 ⇒ LUPDATE x n (l1 ++ l2) = LUPDATE x n l1 ++ l2
lupdate_append2
⊢ ∀v l1 x l2 l3. LUPDATE v (LENGTH l1) (l1 ++ [x] ++ l2) = l1 ++ [v] ++ l2
HD_REVERSE
⊢ ∀x. x ≠ [] ⇒ HD (REVERSE x) = LAST x
LAST_REVERSE
⊢ ∀ls. ls ≠ [] ⇒ LAST (REVERSE ls) = HD ls
NOT_NIL_EQ_LENGTH_NOT_0
⊢ x ≠ [] ⇔ 0 < LENGTH x
last_drop
⊢ ∀l n. n < LENGTH l ⇒ LAST (DROP n l) = LAST l
dropWhile_splitAtPki
⊢ ∀P. dropWhile P = splitAtPki (combin$C (K ∘ $~ ∘ P)) (K I)
dropWhile_eq_nil
⊢ ∀P ls. dropWhile P ls = [] ⇔ EVERY P ls
MEM_dropWhile_IMP
⊢ ∀P ls x. MEM x (dropWhile P ls) ⇒ MEM x ls
HD_dropWhile
⊢ ∀P ls. EXISTS ($~ ∘ P) ls ⇒ ¬P (HD (dropWhile P ls))
LENGTH_dropWhile_LESS_EQ
⊢ ∀P ls. LENGTH (dropWhile P ls) ≤ LENGTH ls
dropWhile_APPEND_EVERY
⊢ ∀P l1 l2. EVERY P l1 ⇒ dropWhile P (l1 ++ l2) = dropWhile P l2
dropWhile_APPEND_EXISTS
⊢ ∀P l1 l2. EXISTS ($~ ∘ P) l1 ⇒ dropWhile P (l1 ++ l2) = dropWhile P l1 ++ l2
EL_LENGTH_dropWhile_REVERSE
⊢ ∀P ls k. LENGTH (dropWhile P (REVERSE ls)) ≤ k ∧ k < LENGTH ls ⇒ P (EL k ls)
LENGTH_TAKE_EQ
⊢ LENGTH (TAKE n xs) = if n ≤ LENGTH xs then n else LENGTH xs
IMP_EVERY_LUPDATE
⊢ ∀xs h i. P h ∧ EVERY P xs ⇒ EVERY P (LUPDATE h i xs)
MAP_APPEND_MAP_EQ
⊢ ∀xs ys.
      MAP f1 xs ++ MAP g1 ys = MAP f2 xs ++ MAP g2 ys ⇔
      MAP f1 xs = MAP f2 xs ∧ MAP g1 ys = MAP g2 ys
LUPDATE_SOME_MAP
⊢ ∀xs n f h.
      LUPDATE (SOME (f h)) n (MAP (OPTION_MAP f) xs) =
      MAP (OPTION_MAP f) (LUPDATE (SOME h) n xs)
ZIP_EQ_NIL
⊢ ∀l1 l2. LENGTH l1 = LENGTH l2 ⇒ (ZIP (l1,l2) = [] ⇔ l1 = [] ∧ l2 = [])
LUPDATE_SAME
⊢ ∀n ls. n < LENGTH ls ⇒ LUPDATE (EL n ls) n ls = ls
UNIQUE_FILTER
⊢ ∀e L. UNIQUE e L ⇔ FILTER ($= e) L = [e]
UNIQUE_LENGTH_FILTER
⊢ ∀e L. UNIQUE e L ⇔ LENGTH (FILTER ($= e) L) = 1
OPT_MMAP_cong
⊢ ∀f1 f2 x1 x2.
      x1 = x2 ∧ (∀a. MEM a x2 ⇒ f1 a = f2 a) ⇒ OPT_MMAP f1 x1 = OPT_MMAP f2 x2
LAST_compute
⊢ (∀x. LAST [x] = x) ∧ ∀h1 h2 t. LAST (h1::h2::t) = LAST (h2::t)
TAKE_compute
⊢ (∀l. TAKE 0 l = []) ∧ (∀n. TAKE (NUMERAL (BIT1 n)) [] = []) ∧
  (∀n. TAKE (NUMERAL (BIT2 n)) [] = []) ∧
  (∀n h t. TAKE (NUMERAL (BIT1 n)) (h::t) = h::TAKE (NUMERAL (BIT1 n) − 1) t) ∧
  ∀n h t. TAKE (NUMERAL (BIT2 n)) (h::t) = h::TAKE (NUMERAL (BIT1 n)) t
DROP_compute
⊢ (∀l. DROP 0 l = l) ∧ (∀n. DROP (NUMERAL (BIT1 n)) [] = []) ∧
  (∀n. DROP (NUMERAL (BIT2 n)) [] = []) ∧
  (∀n h t. DROP (NUMERAL (BIT1 n)) (h::t) = DROP (NUMERAL (BIT1 n) − 1) t) ∧
  ∀n h t. DROP (NUMERAL (BIT2 n)) (h::t) = DROP (NUMERAL (BIT1 n)) t
oHD_thm
⊢ oHD [] = NONE ∧ oHD (h::t) = SOME h
oEL_THM
⊢ ∀xs n. oEL n xs = if n < LENGTH xs then SOME (EL n xs) else NONE
oEL_EQ_EL
⊢ ∀xs n y. oEL n xs = SOME y ⇔ n < LENGTH xs ∧ y = EL n xs
oEL_DROP
⊢ oEL n (DROP m xs) = oEL (m + n) xs
oEL_TAKE_E
⊢ oEL n (TAKE m xs) = SOME x ⇒ oEL n xs = SOME x
oEL_LUPDATE
⊢ ∀xs i n x.
      oEL n (LUPDATE x i xs) = if i ≠ n then oEL n xs
      else if i < LENGTH xs then SOME x else NONE
lazy_list_case_compute
⊢ list_CASE = (λl b f. if NULL l then b else f (HD l) (TL l))