Theory "llist"

Parents     set_relation   indexedLists   patternMatches

Signature

Type Arity
llist 1
Constant Type
LAPPEND :α llist -> α llist -> α llist
LCONS :α -> α llist -> α llist
LDROP :num -> α llist -> α llist option
LFILTER :(α -> bool) -> α llist -> α llist
LFINITE :α llist -> bool
LFLATTEN :α llist llist -> α llist
LGENLIST :(num -> α) -> num option -> α llist
LHD :α llist -> α option
LLENGTH :α llist -> num option
LMAP :(α -> β) -> α llist -> β llist
LNIL :α llist
LNTH :num -> α llist -> α option
LPREFIX :α llist reln
LREPEAT :α list -> α llist
LTAKE :num -> α llist -> α list option
LTL :α llist -> α llist option
LTL_HD :α llist -> (α llist # α) option
LUNFOLD :(β -> (β # α) option) -> β -> α llist
LUNZIP :(α # β) llist -> α llist # β llist
LZIP :α llist # β llist -> (α # β) llist
every :(α -> bool) -> α llist -> bool
exists :(α -> bool) -> α llist -> bool
fromList :α list -> α llist
linear_order_to_list_f :α set_relation$reln -> (α set_relation$reln # α) option
llength_rel :α llist -> num -> bool
llist_abs :(num -> α option) -> α llist
llist_rep :α llist -> num -> α option
lrep_ok :(num -> α option) -> bool
toList :α llist -> α list option

Definitions

lrep_ok_def
⊢ lrep_ok =
  (λa0.
       ∃lrep_ok'.
           lrep_ok' a0 ∧
           ∀a0.
               lrep_ok' a0 ⇒
               a0 = (λn. NONE) ∨
               ∃h t.
                   a0 = (λn. if n = 0 then SOME h else t (n − 1)) ∧ lrep_ok' t)
llist_TY_DEF
⊢ ∃rep. TYPE_DEFINITION lrep_ok rep
llist_absrep
⊢ (∀a. llist_abs (llist_rep a) = a) ∧
  ∀r. lrep_ok r ⇔ llist_rep (llist_abs r) = r
LNIL
⊢ [||] = llist_abs (λn. NONE)
LCONS
⊢ ∀h t. h:::t = llist_abs (λn. if n = 0 then SOME h else llist_rep t (n − 1))
LTL_HD_def
⊢ ∀ll.
      LTL_HD ll =
      case llist_rep ll 0 of
        NONE => NONE
      | SOME h => SOME (llist_abs (llist_rep ll ∘ SUC),h)
LHD
⊢ ∀ll. LHD ll = llist_rep ll 0
LTL
⊢ ∀ll.
      LTL ll =
      case LHD ll of
        NONE => NONE
      | SOME v => SOME (llist_abs (λn. llist_rep ll (n + 1)))
LNTH
⊢ (∀ll. LNTH 0 ll = LHD ll) ∧
  ∀n ll. LNTH (SUC n) ll = OPTION_JOIN (OPTION_MAP (LNTH n) (LTL ll))
LUNFOLD_def
⊢ ∀f z.
      LUNFOLD f z =
      llist_abs
        (λn.
             OPTION_MAP SND
               (FUNPOW (λm. OPTION_BIND m (UNCURRY (K ∘ f))) n (f z)))
LTAKE
⊢ (∀ll. LTAKE 0 ll = SOME []) ∧
  ∀n ll.
      LTAKE (SUC n) ll =
      case LHD ll of
        NONE => NONE
      | SOME hd =>
        case LTAKE n (THE (LTL ll)) of NONE => NONE | SOME tl => SOME (hd::tl)
LMAP
⊢ (∀f. LMAP f [||] = [||]) ∧ ∀f h t. LMAP f (h:::t) = f h:::LMAP f t
LAPPEND
⊢ (∀x. LAPPEND [||] x = x) ∧ ∀h t x. LAPPEND (h:::t) x = h:::LAPPEND t x
LFINITE_def
⊢ LFINITE =
  (λa0.
       ∀LFINITE'.
           (∀a0. a0 = [||] ∨ (∃h t. a0 = h:::t ∧ LFINITE' t) ⇒ LFINITE' a0) ⇒
           LFINITE' a0)
llength_rel_def
⊢ llength_rel =
  (λa0 a1.
       ∀llength_rel'.
           (∀a0 a1.
                a0 = [||] ∧ a1 = 0 ∨
                (∃h n t. a0 = h:::t ∧ a1 = SUC n ∧ llength_rel' t n) ⇒
                llength_rel' a0 a1) ⇒
           llength_rel' a0 a1)
LLENGTH
⊢ ∀ll. LLENGTH ll = if LFINITE ll then SOME (@n. llength_rel ll n) else NONE
toList
⊢ ∀ll. toList ll = if LFINITE ll then LTAKE (THE (LLENGTH ll)) ll else NONE
fromList_def
⊢ fromList [] = [||] ∧ ∀h t. fromList (h::t) = h:::fromList t
LDROP
⊢ (∀ll. LDROP 0 ll = SOME ll) ∧
  ∀n ll. LDROP (SUC n) ll = OPTION_JOIN (OPTION_MAP (LDROP n) (LTL ll))
exists_def
⊢ exists =
  (λP a0.
       ∀exists'.
           (∀a0.
                (∃h t. a0 = h:::t ∧ P h) ∨ (∃h t. a0 = h:::t ∧ exists' t) ⇒
                exists' a0) ⇒
           exists' a0)
every_def
⊢ ∀P ll. every P ll ⇔ ¬exists ($~ ∘ P) ll
LFILTER
⊢ ∀P ll.
      LFILTER P ll = if ¬exists P ll then [||]
      else if P (THE (LHD ll)) then THE (LHD ll):::LFILTER P (THE (LTL ll))
      else LFILTER P (THE (LTL ll))
LFLATTEN
⊢ ∀ll.
      LFLATTEN ll = if every ($= [||]) ll then [||]
      else if THE (LHD ll) = [||] then LFLATTEN (THE (LTL ll))
      else
        THE (LHD (THE (LHD ll))):::
            LFLATTEN (THE (LTL (THE (LHD ll))):::THE (LTL ll))
LZIP_THM
⊢ (∀l1. LZIP (l1,[||]) = [||]) ∧ (∀l2. LZIP ([||],l2) = [||]) ∧
  ∀h1 h2 t1 t2. LZIP (h1:::t1,h2:::t2) = (h1,h2):::LZIP (t1,t2)
LUNZIP_THM
⊢ LUNZIP [||] = ([||],[||]) ∧
  ∀x y t. LUNZIP ((x,y):::t) = (let (ll1,ll2) = LUNZIP t in (x:::ll1,y:::ll2))
linear_order_to_list_f_def
⊢ ∀lo.
      linear_order_to_list_f lo =
      (let
         min = minimal_elements (domain lo ∪ range lo) lo
       in
         if min = ∅ then NONE
         else SOME (rrestrict lo (domain lo ∪ range lo DIFF min),CHOICE min))
LPREFIX_def
⊢ ∀l1 l2.
      LPREFIX l1 l2 ⇔
      case toList l1 of
        NONE => l1 = l2
      | SOME xs =>
        case toList l2 of
          NONE => LTAKE (LENGTH xs) l2 = SOME xs
        | SOME ys => xs ≼ ys
LGENLIST_def
⊢ (∀f. LGENLIST f NONE = LUNFOLD (λn. SOME (n + 1,f n)) 0) ∧
  ∀f lim.
      LGENLIST f (SOME lim) =
      LUNFOLD (λn. if n < lim then SOME (n + 1,f n) else NONE) 0
LREPEAT_def
⊢ ∀l.
      LREPEAT l = if NULL l then [||]
      else LGENLIST (λn. EL (n MOD LENGTH l) l) NONE


Theorems

lrep_ok_rules
⊢ lrep_ok (λn. NONE) ∧
  ∀h t. lrep_ok t ⇒ lrep_ok (λn. if n = 0 then SOME h else t (n − 1))
lrep_ok_coind
⊢ ∀lrep_ok'.
      (∀a0.
           lrep_ok' a0 ⇒
           a0 = (λn. NONE) ∨
           ∃h t. a0 = (λn. if n = 0 then SOME h else t (n − 1)) ∧ lrep_ok' t) ⇒
      ∀a0. lrep_ok' a0 ⇒ lrep_ok a0
lrep_ok_cases
⊢ ∀a0.
      lrep_ok a0 ⇔
      a0 = (λn. NONE) ∨
      ∃h t. a0 = (λn. if n = 0 then SOME h else t (n − 1)) ∧ lrep_ok t
lrep_ok_alt
⊢ lrep_ok f ⇔ ∀n. IS_SOME (f (SUC n)) ⇒ IS_SOME (f n)
lrep_ok_MAP
⊢ lrep_ok (λn. OPTION_MAP f (g n)) ⇔ lrep_ok g
lrep_ok_FUNPOW_BIND
⊢ lrep_ok (λn. FUNPOW (λm. OPTION_BIND m g) n fz)
llist_rep_LCONS
⊢ llist_rep (h:::t) = (λn. if n = 0 then SOME h else llist_rep t (n − 1))
llist_rep_LNIL
⊢ llist_rep [||] = (λn. NONE)
LTL_HD_LNIL
⊢ LTL_HD [||] = NONE
LTL_HD_LCONS
⊢ LTL_HD (h:::t) = SOME (t,h)
LTL_HD_HD
⊢ LHD ll = OPTION_MAP SND (LTL_HD ll)
LTL_HD_TL
⊢ LTL ll = OPTION_MAP FST (LTL_HD ll)
LHD_LCONS
⊢ LHD (h:::t) = SOME h
LTL_LCONS
⊢ LTL (h:::t) = SOME t
LHDTL_CONS_THM
⊢ ∀h t. LHD (h:::t) = SOME h ∧ LTL (h:::t) = SOME t
llist_CASES
⊢ ∀l. l = [||] ∨ ∃h t. l = h:::t
LTL_HD_11
⊢ LTL_HD ll1 = LTL_HD ll2 ⇒ ll1 = ll2
LHD_THM
⊢ LHD [||] = NONE ∧ ∀h t. LHD (h:::t) = SOME h
LTL_THM
⊢ LTL [||] = NONE ∧ ∀h t. LTL (h:::t) = SOME t
LCONS_NOT_NIL
⊢ ∀h t. h:::t ≠ [||] ∧ [||] ≠ h:::t
LCONS_11
⊢ ∀h1 t1 h2 t2. h1:::t1 = h2:::t2 ⇔ h1 = h2 ∧ t1 = t2
LTL_HD_iff
⊢ (LTL_HD x = SOME (t,h) ⇔ x = h:::t) ∧ (LTL_HD x = NONE ⇔ x = [||])
LHD_EQ_NONE
⊢ ∀ll. (LHD ll = NONE ⇔ ll = [||]) ∧ (NONE = LHD ll ⇔ ll = [||])
LTL_EQ_NONE
⊢ ∀ll. (LTL ll = NONE ⇔ ll = [||]) ∧ (NONE = LTL ll ⇔ ll = [||])
LHDTL_EQ_SOME
⊢ ∀h t ll. ll = h:::t ⇔ LHD ll = SOME h ∧ LTL ll = SOME t
LNTH_THM
⊢ (∀n. LNTH n [||] = NONE) ∧ (∀h t. LNTH 0 (h:::t) = SOME h) ∧
  ∀n h t. LNTH (SUC n) (h:::t) = LNTH n t
LNTH_rep
⊢ ∀i ll. LNTH i ll = llist_rep ll i
LNTH_EQ
⊢ ∀ll1 ll2. ll1 = ll2 ⇔ ∀n. LNTH n ll1 = LNTH n ll2
LUNFOLD
⊢ ∀f x.
      LUNFOLD f x =
      case f x of NONE => [||] | SOME (v1,v2) => v2:::LUNFOLD f v1
LUNFOLD_UNIQUE
⊢ ∀f g.
      (∀x. g x = case f x of NONE => [||] | SOME (v1,v2) => v2:::g v1) ⇒
      ∀y. g y = LUNFOLD f y
LUNFOLD_LTL_HD
⊢ LUNFOLD LTL_HD ll = ll
LTL_HD_LUNFOLD
⊢ LTL_HD (LUNFOLD f x) = OPTION_MAP (LUNFOLD f ## I) (f x)
LNTH_LUNFOLD
⊢ LNTH 0 (LUNFOLD f x) = OPTION_MAP SND (f x) ∧
  LNTH (SUC n) (LUNFOLD f x) =
  case f x of NONE => NONE | SOME (tx,hx) => LNTH n (LUNFOLD f tx)
LNTH_LUNFOLD_compute
⊢ LNTH 0 (LUNFOLD f x) = OPTION_MAP SND (f x) ∧
  (∀n.
       LNTH (NUMERAL (BIT1 n)) (LUNFOLD f x) =
       case f x of
         NONE => NONE
       | SOME (tx,hx) => LNTH (NUMERAL (BIT1 n) − 1) (LUNFOLD f tx)) ∧
  ∀n.
      LNTH (NUMERAL (BIT2 n)) (LUNFOLD f x) =
      case f x of
        NONE => NONE
      | SOME (tx,hx) => LNTH (NUMERAL (BIT1 n)) (LUNFOLD f tx)
LHD_LUNFOLD
⊢ LHD (LUNFOLD f x) = OPTION_MAP SND (f x)
LTL_LUNFOLD
⊢ LTL (LUNFOLD f x) = OPTION_MAP (LUNFOLD f ∘ FST) (f x)
llist_Axiom_1
⊢ ∀f. ∃g. ∀x. g x = case f x of NONE => [||] | SOME (a,b) => b:::g a
llist_Axiom_1ue
⊢ ∀f. ∃!g. ∀x. g x = case f x of NONE => [||] | SOME (a,b) => b:::g a
llist_ue_Axiom
⊢ ∀f.
      ∃!g.
          (∀x. LHD (g x) = OPTION_MAP SND (f x)) ∧
          ∀x. LTL (g x) = OPTION_MAP (g ∘ FST) (f x)
llist_Axiom
⊢ ∀f.
      ∃g.
          (∀x. LHD (g x) = OPTION_MAP SND (f x)) ∧
          ∀x. LTL (g x) = OPTION_MAP (g ∘ FST) (f x)
LUNFOLD_BISIMULATION
⊢ ∀f1 f2 x1 x2.
      LUNFOLD f1 x1 = LUNFOLD f2 x2 ⇔
      ∃R.
          R x1 x2 ∧
          ∀y1 y2.
              R y1 y2 ⇒
              f1 y1 = NONE ∧ f2 y2 = NONE ∨
              ∃h t1 t2. f1 y1 = SOME (t1,h) ∧ f2 y2 = SOME (t2,h) ∧ R t1 t2
LLIST_BISIMULATION0
⊢ ∀ll1 ll2.
      ll1 = ll2 ⇔
      ∃R.
          R ll1 ll2 ∧
          ∀ll3 ll4.
              R ll3 ll4 ⇒
              ll3 = [||] ∧ ll4 = [||] ∨
              ∃h t1 t2. ll3 = h:::t1 ∧ ll4 = h:::t2 ∧ R t1 t2
LLIST_BISIMULATION
⊢ ∀ll1 ll2.
      ll1 = ll2 ⇔
      ∃R.
          R ll1 ll2 ∧
          ∀ll3 ll4.
              R ll3 ll4 ⇒
              ll3 = [||] ∧ ll4 = [||] ∨
              LHD ll3 = LHD ll4 ∧ R (THE (LTL ll3)) (THE (LTL ll4))
LLIST_STRONG_BISIMULATION
⊢ ∀ll1 ll2.
      ll1 = ll2 ⇔
      ∃R.
          R ll1 ll2 ∧
          ∀ll3 ll4.
              R ll3 ll4 ⇒
              ll3 = ll4 ∨ ∃h t1 t2. ll3 = h:::t1 ∧ ll4 = h:::t2 ∧ R t1 t2
LTAKE_LUNFOLD
⊢ LTAKE 0 (LUNFOLD f x) = SOME [] ∧
  LTAKE (SUC n) (LUNFOLD f x) =
  case f x of
    NONE => NONE
  | SOME (tx,hx) => OPTION_MAP (CONS hx) (LTAKE n (LUNFOLD f tx))
LTAKE_THM
⊢ (∀l. LTAKE 0 l = SOME []) ∧ (∀n. LTAKE (SUC n) [||] = NONE) ∧
  ∀n h t. LTAKE (SUC n) (h:::t) = OPTION_MAP (CONS h) (LTAKE n t)
LTAKE_SNOC_LNTH
⊢ ∀n ll.
      LTAKE (SUC n) ll =
      case LTAKE n ll of
        NONE => NONE
      | SOME l => case LNTH n ll of NONE => NONE | SOME e => SOME (l ++ [e])
LTAKE_EQ_NONE_LNTH
⊢ ∀n ll. LTAKE n ll = NONE ⇒ LNTH n ll = NONE
LTAKE_NIL_EQ_SOME
⊢ ∀l m. LTAKE m [||] = SOME l ⇔ m = 0 ∧ l = []
LTAKE_NIL_EQ_NONE
⊢ ∀m. LTAKE m [||] = NONE ⇔ 0 < m
LTAKE_EQ
⊢ ∀ll1 ll2. ll1 = ll2 ⇔ ∀n. LTAKE n ll1 = LTAKE n ll2
LTAKE_CONS_EQ_NONE
⊢ ∀m h t. LTAKE m (h:::t) = NONE ⇔ ∃n. m = SUC n ∧ LTAKE n t = NONE
LTAKE_CONS_EQ_SOME
⊢ ∀m h t l.
      LTAKE m (h:::t) = SOME l ⇔
      m = 0 ∧ l = [] ∨ ∃n l'. m = SUC n ∧ LTAKE n t = SOME l' ∧ l = h::l'
LTAKE_EQ_SOME_CONS
⊢ ∀n l x. LTAKE n l = SOME x ⇒ ∀h. ∃y. LTAKE n (h:::l) = SOME y
LMAP_APPEND
⊢ ∀f ll1 ll2. LMAP f (LAPPEND ll1 ll2) = LAPPEND (LMAP f ll1) (LMAP f ll2)
LAPPEND_EQ_LNIL
⊢ LAPPEND l1 l2 = [||] ⇔ l1 = [||] ∧ l2 = [||]
LAPPEND_ASSOC
⊢ ∀ll1 ll2 ll3. LAPPEND (LAPPEND ll1 ll2) ll3 = LAPPEND ll1 (LAPPEND ll2 ll3)
LMAP_MAP
⊢ ∀f g ll. LMAP f (LMAP g ll) = LMAP (f ∘ g) ll
LAPPEND_NIL_2ND
⊢ ∀ll. LAPPEND ll [||] = ll
LHD_LAPPEND
⊢ LHD (LAPPEND l1 l2) = if l1 = [||] then LHD l2 else LHD l1
LTL_LAPPEND
⊢ LTL (LAPPEND l1 l2) = if l1 = [||] then LTL l2
  else SOME (LAPPEND (THE (LTL l1)) l2)
LTAKE_LAPPEND1
⊢ ∀n l1 l2. IS_SOME (LTAKE n l1) ⇒ LTAKE n (LAPPEND l1 l2) = LTAKE n l1
LFINITE_rules
⊢ LFINITE [||] ∧ ∀h t. LFINITE t ⇒ LFINITE (h:::t)
LFINITE_ind
⊢ ∀LFINITE'.
      LFINITE' [||] ∧ (∀h t. LFINITE' t ⇒ LFINITE' (h:::t)) ⇒
      ∀a0. LFINITE a0 ⇒ LFINITE' a0
LFINITE_strongind
⊢ ∀LFINITE'.
      LFINITE' [||] ∧ (∀h t. LFINITE t ∧ LFINITE' t ⇒ LFINITE' (h:::t)) ⇒
      ∀a0. LFINITE a0 ⇒ LFINITE' a0
LFINITE_cases
⊢ ∀a0. LFINITE a0 ⇔ a0 = [||] ∨ ∃h t. a0 = h:::t ∧ LFINITE t
LFINITE_THM
⊢ (LFINITE [||] ⇔ T) ∧ ∀h t. LFINITE (h:::t) ⇔ LFINITE t
LFINITE
⊢ LFINITE ll ⇔ ∃n. LTAKE n ll = NONE
llength_rel_rules
⊢ llength_rel [||] 0 ∧ ∀h n t. llength_rel t n ⇒ llength_rel (h:::t) (SUC n)
llength_rel_ind
⊢ ∀llength_rel'.
      llength_rel' [||] 0 ∧
      (∀h n t. llength_rel' t n ⇒ llength_rel' (h:::t) (SUC n)) ⇒
      ∀a0 a1. llength_rel a0 a1 ⇒ llength_rel' a0 a1
llength_rel_strongind
⊢ ∀llength_rel'.
      llength_rel' [||] 0 ∧
      (∀h n t.
           llength_rel t n ∧ llength_rel' t n ⇒ llength_rel' (h:::t) (SUC n)) ⇒
      ∀a0 a1. llength_rel a0 a1 ⇒ llength_rel' a0 a1
llength_rel_cases
⊢ ∀a0 a1.
      llength_rel a0 a1 ⇔
      a0 = [||] ∧ a1 = 0 ∨ ∃h n t. a0 = h:::t ∧ a1 = SUC n ∧ llength_rel t n
LLENGTH_THM
⊢ LLENGTH [||] = SOME 0 ∧ ∀h t. LLENGTH (h:::t) = OPTION_MAP SUC (LLENGTH t)
LLENGTH_0
⊢ LLENGTH x = SOME 0 ⇔ x = [||]
LFINITE_HAS_LENGTH
⊢ ∀ll. LFINITE ll ⇒ ∃n. LLENGTH ll = SOME n
NOT_LFINITE_NO_LENGTH
⊢ ∀ll. ¬LFINITE ll ⇒ LLENGTH ll = NONE
LFINITE_LLENGTH
⊢ LFINITE ll ⇔ ∃n. LLENGTH ll = SOME n
LFINITE_INDUCTION
⊢ ∀P. P [||] ∧ (∀h t. P t ⇒ P (h:::t)) ⇒ ∀a0. LFINITE a0 ⇒ P a0
LFINITE_STRONG_INDUCTION
⊢ P [||] ∧ (∀h t. LFINITE t ∧ P t ⇒ P (h:::t)) ⇒ ∀a0. LFINITE a0 ⇒ P a0
LFINITE_MAP
⊢ ∀f ll. LFINITE (LMAP f ll) ⇔ LFINITE ll
LFINITE_APPEND
⊢ ∀ll1 ll2. LFINITE (LAPPEND ll1 ll2) ⇔ LFINITE ll1 ∧ LFINITE ll2
LTAKE_LNTH_EL
⊢ ∀n ll m l. LTAKE n ll = SOME l ∧ m < n ⇒ LNTH m ll = SOME (EL m l)
NOT_LFINITE_APPEND
⊢ ∀ll1 ll2. ¬LFINITE ll1 ⇒ LAPPEND ll1 ll2 = ll1
LFINITE_LAPPEND_IMP_NIL
⊢ ∀ll. LFINITE ll ⇒ ∀l2. LAPPEND ll l2 = ll ⇒ l2 = [||]
LLENGTH_MAP
⊢ ∀ll f. LLENGTH (LMAP f ll) = LLENGTH ll
LLENGTH_APPEND
⊢ ∀ll1 ll2.
      LLENGTH (LAPPEND ll1 ll2) =
      if LFINITE ll1 ∧ LFINITE ll2 then
        SOME (THE (LLENGTH ll1) + THE (LLENGTH ll2)) else NONE
toList_THM
⊢ toList [||] = SOME [] ∧
  ∀h t. toList (h:::t) = OPTION_MAP (CONS h) (toList t)
fromList_EQ_LNIL
⊢ fromList l = [||] ⇔ l = []
LHD_fromList
⊢ LHD (fromList l) = if NULL l then NONE else SOME (HD l)
LTL_fromList
⊢ LTL (fromList l) = if NULL l then NONE else SOME (fromList (TL l))
LFINITE_fromList
⊢ ∀l. LFINITE (fromList l)
LLENGTH_fromList
⊢ ∀l. LLENGTH (fromList l) = SOME (LENGTH l)
LTAKE_fromList
⊢ ∀l. LTAKE (LENGTH l) (fromList l) = SOME l
from_toList
⊢ ∀l. toList (fromList l) = SOME l
LFINITE_toList
⊢ ∀ll. LFINITE ll ⇒ ∃l. toList ll = SOME l
LFINITE_toList_SOME
⊢ LFINITE ll ⇔ IS_SOME (toList ll)
to_fromList
⊢ ∀ll. LFINITE ll ⇒ fromList (THE (toList ll)) = ll
LTAKE_LAPPEND2
⊢ ∀n l1 l2.
      LTAKE n l1 = NONE ⇒
      LTAKE n (LAPPEND l1 l2) =
      OPTION_MAP ($++ (THE (toList l1))) (LTAKE (n − THE (LLENGTH l1)) l2)
LNTH_fromList
⊢ LNTH n (fromList l) = if n < LENGTH l then SOME (EL n l) else NONE
lnth_fromList_some
⊢ ∀n l. n < LENGTH l ⇔ LNTH n (fromList l) = SOME (EL n l)
LDROP_FUNPOW
⊢ ∀n ll. LDROP n ll = FUNPOW (λm. OPTION_BIND m LTL) n (SOME ll)
LDROP_THM
⊢ (∀ll. LDROP 0 ll = SOME ll) ∧ (∀n. LDROP (SUC n) [||] = NONE) ∧
  ∀n h t. LDROP (SUC n) (h:::t) = LDROP n t
LDROP1_THM
⊢ LDROP 1 = LTL
LNTH_HD_LDROP
⊢ ∀n ll. LNTH n ll = OPTION_BIND (LDROP n ll) LHD
NOT_LFINITE_TAKE
⊢ ∀ll. ¬LFINITE ll ⇒ ∀n. ∃y. LTAKE n ll = SOME y
LFINITE_TAKE
⊢ ∀n ll. LFINITE ll ∧ n ≤ THE (LLENGTH ll) ⇒ ∃y. LTAKE n ll = SOME y
NOT_LFINITE_DROP
⊢ ∀ll. ¬LFINITE ll ⇒ ∀n. ∃y. LDROP n ll = SOME y
LFINITE_DROP
⊢ ∀n ll. LFINITE ll ∧ n ≤ THE (LLENGTH ll) ⇒ ∃y. LDROP n ll = SOME y
LTAKE_DROP
⊢ (∀n ll.
       ¬LFINITE ll ⇒
       LAPPEND (fromList (THE (LTAKE n ll))) (THE (LDROP n ll)) = ll) ∧
  ∀n ll.
      LFINITE ll ∧ n ≤ THE (LLENGTH ll) ⇒
      LAPPEND (fromList (THE (LTAKE n ll))) (THE (LDROP n ll)) = ll
LDROP_ADD
⊢ ∀k1 k2 x.
      LDROP (k1 + k2) x =
      case LDROP k1 x of NONE => NONE | SOME ll => LDROP k2 ll
LDROP_SOME_LLENGTH
⊢ LDROP n ll = SOME l ∧ LLENGTH ll = SOME m ⇒ n ≤ m ∧ LLENGTH l = SOME (m − n)
LFINITE_LNTH_NONE
⊢ LFINITE ll ⇔ ∃n. LNTH n ll = NONE
infinite_lnth_some
⊢ ∀ll. ¬LFINITE ll ⇔ ∀n. ∃x. LNTH n ll = SOME x
LNTH_LAPPEND
⊢ LNTH n (LAPPEND l1 l2) =
  case LLENGTH l1 of
    NONE => LNTH n l1
  | SOME m => if n < m then LNTH n l1 else LNTH (n − m) l2
LNTH_ADD
⊢ ∀a b ll. LNTH (a + b) ll = OPTION_BIND (LDROP a ll) (LNTH b)
lnth_some_down_closed
⊢ ∀ll x n1 n2. LNTH n1 ll = SOME x ∧ n2 ≤ n1 ⇒ ∃y. LNTH n2 ll = SOME y
exists_rules
⊢ ∀P. (∀h t. P h ⇒ exists P (h:::t)) ∧ ∀h t. exists P t ⇒ exists P (h:::t)
exists_ind
⊢ ∀P exists'.
      (∀h t. P h ⇒ exists' (h:::t)) ∧ (∀h t. exists' t ⇒ exists' (h:::t)) ⇒
      ∀a0. exists P a0 ⇒ exists' a0
exists_strongind
⊢ ∀P exists'.
      (∀h t. P h ⇒ exists' (h:::t)) ∧
      (∀h t. exists P t ∧ exists' t ⇒ exists' (h:::t)) ⇒
      ∀a0. exists P a0 ⇒ exists' a0
exists_cases
⊢ ∀P a0.
      exists P a0 ⇔ (∃h t. a0 = h:::t ∧ P h) ∨ ∃h t. a0 = h:::t ∧ exists P t
exists_thm
⊢ (exists P [||] ⇔ F) ∧ (exists P (h:::t) ⇔ P h ∨ exists P t)
exists_LNTH
⊢ ∀l. exists P l ⇔ ∃n e. SOME e = LNTH n l ∧ P e
MONO_exists
⊢ (∀x. P x ⇒ Q x) ⇒ exists P l ⇒ exists Q l
exists_strong_ind
⊢ ∀P Q.
      (∀h t. P h ⇒ Q (h:::t)) ∧ (∀h t. Q t ∧ exists P t ⇒ Q (h:::t)) ⇒
      ∀a0. exists P a0 ⇒ Q a0
exists_LDROP
⊢ exists P ll ⇔ ∃n a t. LDROP n ll = SOME (a:::t) ∧ P a
every_coind
⊢ ∀P Q. (∀h t. Q (h:::t) ⇒ P h ∧ Q t) ⇒ ∀ll. Q ll ⇒ every P ll
every_thm
⊢ (every P [||] ⇔ T) ∧ (every P (h:::t) ⇔ P h ∧ every P t)
LL_ALL_THM
⊢ (every P [||] ⇔ T) ∧ (every P (h:::t) ⇔ P h ∧ every P t)
MONO_every
⊢ (∀x. P x ⇒ Q x) ⇒ every P l ⇒ every Q l
every_strong_coind
⊢ ∀P Q.
      (∀h t. Q (h:::t) ⇒ P h) ∧ (∀h t. Q (h:::t) ⇒ Q t ∨ every P t) ⇒
      ∀ll. Q ll ⇒ every P ll
LFILTER_THM
⊢ (∀P. LFILTER P [||] = [||]) ∧
  ∀P h t. LFILTER P (h:::t) = if P h then h:::LFILTER P t else LFILTER P t
LFILTER_NIL
⊢ ∀P ll. every ($~ ∘ P) ll ⇒ LFILTER P ll = [||]
LFILTER_EQ_NIL
⊢ ∀ll. LFILTER P ll = [||] ⇔ every ($~ ∘ P) ll
LFILTER_APPEND
⊢ ∀P ll1 ll2.
      LFINITE ll1 ⇒
      LFILTER P (LAPPEND ll1 ll2) = LAPPEND (LFILTER P ll1) (LFILTER P ll2)
LFLATTEN_THM
⊢ LFLATTEN [||] = [||] ∧ (∀tl. LFLATTEN ([||]:::t) = LFLATTEN t) ∧
  ∀h t tl. LFLATTEN ((h:::t):::tl) = h:::LFLATTEN (t:::tl)
LFLATTEN_APPEND
⊢ ∀h t. LFLATTEN (h:::t) = LAPPEND h (LFLATTEN t)
LFLATTEN_EQ_NIL
⊢ ∀ll. LFLATTEN ll = [||] ⇔ every ($= [||]) ll
LFLATTEN_SINGLETON
⊢ ∀h. LFLATTEN [|h|] = h
LZIP_LUNZIP
⊢ ∀ll. LZIP (LUNZIP ll) = ll
LUNFOLD_THM
⊢ ∀f x v1 v2.
      (f x = NONE ⇒ LUNFOLD f x = [||]) ∧
      (f x = SOME (v1,v2) ⇒ LUNFOLD f x = v2:::LUNFOLD f v1)
LLIST_EQ
⊢ ∀f g.
      (∀x. f x = [||] ∧ g x = [||] ∨ ∃h y. f x = h:::f y ∧ g x = h:::g y) ⇒
      ∀x. f x = g x
LUNFOLD_EQ
⊢ ∀R f s ll.
      R s ll ∧
      (∀s ll.
           R s ll ⇒
           f s = NONE ∧ ll = [||] ∨
           ∃s' x ll'.
               f s = SOME (s',x) ∧ LHD ll = SOME x ∧ LTL ll = SOME ll' ∧
               R s' ll') ⇒
      LUNFOLD f s = ll
LMAP_LUNFOLD
⊢ ∀f g s.
      LMAP f (LUNFOLD g s) =
      LUNFOLD (λs. OPTION_MAP (λ(x,y). (x,f y)) (g s)) s
LNTH_LDROP
⊢ ∀n l x. LNTH n l = SOME x ⇒ LHD (THE (LDROP n l)) = SOME x
LAPPEND_fromList
⊢ ∀l1 l2. LAPPEND (fromList l1) (fromList l2) = fromList (l1 ++ l2)
LTAKE_LENGTH
⊢ ∀n ll l. LTAKE n ll = SOME l ⇒ n = LENGTH l
LTAKE_TAKE_LESS
⊢ LTAKE n ll = SOME l ∧ m ≤ n ⇒ LTAKE m ll = SOME (TAKE m l)
LTAKE_LLENGTH_NONE
⊢ LLENGTH ll = SOME n ∧ n < m ⇒ LTAKE m ll = NONE
LTAKE_LLENGTH_SOME
⊢ LLENGTH ll = SOME n ⇒ ∃l. LTAKE n ll = SOME l ∧ toList ll = SOME l
toList_LAPPEND_APPEND
⊢ toList (LAPPEND l1 l2) = SOME x ⇒ x = THE (toList l1) ++ THE (toList l2)
LNTH_LLENGTH_NONE
⊢ LLENGTH l = SOME x ∧ x ≤ n ⇒ LNTH n l = NONE
LNTH_NONE_MONO
⊢ ∀m n l. LNTH m l = NONE ∧ m ≤ n ⇒ LNTH n l = NONE
linear_order_to_llist_eq
⊢ ∀lo X.
      linear_order lo X ∧ finite_prefixes lo X ⇒
      ∃ll.
          X = {x | ∃i. LNTH i ll = SOME x} ∧
          lo = {(x,y) | ∃i j. i ≤ j ∧ LNTH i ll = SOME x ∧ LNTH j ll = SOME y} ∧
          ∀i j x. LNTH i ll = SOME x ∧ LNTH j ll = SOME x ⇒ i = j
linear_order_to_llist
⊢ ∀lo X.
      linear_order lo X ∧ finite_prefixes lo X ⇒
      ∃ll.
          X = {x | ∃i. LNTH i ll = SOME x} ∧
          lo ⊆ {(x,y) | ∃i j. i ≤ j ∧ LNTH i ll = SOME x ∧ LNTH j ll = SOME y} ∧
          ∀i j x. LNTH i ll = SOME x ∧ LNTH j ll = SOME x ⇒ i = j
LPREFIX_LNIL
⊢ LPREFIX [||] ll ∧ (LPREFIX ll [||] ⇔ ll = [||])
LPREFIX_LCONS
⊢ (∀ll h t. LPREFIX ll (h:::t) ⇔ ll = [||] ∨ ∃l. ll = h:::l ∧ LPREFIX l t) ∧
  ∀h t ll. LPREFIX (h:::t) ll ⇔ ∃l. ll = h:::l ∧ LPREFIX t l
LPREFIX_LUNFOLD
⊢ LPREFIX ll (LUNFOLD f n) ⇔
  case f n of
    NONE => ll = [||]
  | SOME (n,x) => ∀h t. ll = h:::t ⇒ h = x ∧ LPREFIX t (LUNFOLD f n)
LPREFIX_REFL
⊢ LPREFIX ll ll
LPREFIX_ANTISYM
⊢ LPREFIX l1 l2 ∧ LPREFIX l2 l1 ⇒ l1 = l2
LPREFIX_TRANS
⊢ LPREFIX l1 l2 ∧ LPREFIX l2 l3 ⇒ LPREFIX l1 l3
LPREFIX_fromList
⊢ ∀l ll.
      LPREFIX (fromList l) ll ⇔
      case toList ll of
        NONE => LTAKE (LENGTH l) ll = SOME l
      | SOME ys => l ≼ ys
prefixes_lprefix_total
⊢ ∀ll l1 l2. LPREFIX l1 ll ∧ LPREFIX l2 ll ⇒ LPREFIX l1 l2 ∨ LPREFIX l2 l1
LTAKE_IMP_LDROP
⊢ ∀n ll l1.
      LTAKE n ll = SOME l1 ⇒
      ∃l2. LDROP n ll = SOME l2 ∧ LAPPEND (fromList l1) l2 = ll
LDROP_EQ_LNIL
⊢ LDROP n ll = SOME [||] ⇔ LLENGTH ll = SOME n
LPREFIX_APPEND
⊢ LPREFIX l1 l2 ⇔ ∃ll. l2 = LAPPEND l1 ll
NOT_LFINITE_DROP_LFINITE
⊢ ∀n l t. ¬LFINITE l ∧ LDROP n l = SOME t ⇒ ¬LFINITE t
LDROP_APPEND1
⊢ LDROP n l1 = SOME l ⇒ LDROP n (LAPPEND l1 l2) = SOME (LAPPEND l l2)
LDROP_fromList
⊢ ∀ls n.
      LDROP n (fromList ls) =
      if n ≤ LENGTH ls then SOME (fromList (DROP n ls)) else NONE
LDROP_SUC
⊢ LDROP (SUC n) ls = OPTION_BIND (LDROP n ls) LTL
LHD_LGENLIST
⊢ LHD (LGENLIST f limopt) = if limopt = SOME 0 then NONE else SOME (f 0)
LTL_LGENLIST
⊢ LTL (LGENLIST f limopt) = if limopt = SOME 0 then NONE
  else SOME (LGENLIST (f ∘ SUC) (OPTION_MAP PRE limopt))
numopt_BISIMULATION
⊢ ∀mopt nopt.
      mopt = nopt ⇔
      ∃R.
          R mopt nopt ∧
          ∀m n.
              R m n ⇒
              m = SOME 0 ∧ n = SOME 0 ∨
              m ≠ SOME 0 ∧ n ≠ SOME 0 ∧
              R (OPTION_MAP PRE m) (OPTION_MAP PRE n)
LGENLIST_EQ_LNIL
⊢ (LGENLIST f n = [||] ⇔ n = SOME 0) ∧ ([||] = LGENLIST f n ⇔ n = SOME 0)
LFINITE_LGENLIST
⊢ LFINITE (LGENLIST f n) ⇔ n ≠ NONE
LTL_HD_LTL_LHD
⊢ LTL_HD l = OPTION_BIND (LHD l) (λh. OPTION_BIND (LTL l) (λt. SOME (t,h)))
LGENLIST_SOME
⊢ LGENLIST f (SOME 0) = [||] ∧
  ∀n. LGENLIST f (SOME (SUC n)) = f 0:::LGENLIST (f ∘ SUC) (SOME n)
LGENLIST_SOME_compute
⊢ LGENLIST f (SOME 0) = [||] ∧
  (∀n.
       LGENLIST f (SOME (NUMERAL (BIT1 n))) =
       f 0:::LGENLIST (f ∘ SUC) (SOME (NUMERAL (BIT1 n) − 1))) ∧
  ∀n.
      LGENLIST f (SOME (NUMERAL (BIT2 n))) =
      f 0:::LGENLIST (f ∘ SUC) (SOME (NUMERAL (BIT1 n)))
LNTH_LGENLIST
⊢ ∀n f lim.
      LNTH n (LGENLIST f lim) =
      case lim of
        NONE => SOME (f n)
      | SOME lim0 => if n < lim0 then SOME (f n) else NONE
LNTH_LMAP
⊢ ∀n f l. LNTH n (LMAP f l) = OPTION_MAP f (LNTH n l)
LLENGTH_LGENLIST
⊢ ∀f. LLENGTH (LGENLIST f limopt) = limopt
LMAP_LGENLIST
⊢ LMAP f (LGENLIST g limopt) = LGENLIST (f ∘ g) limopt
LGENLIST_EQ_CONS
⊢ LGENLIST f NONE = h:::t ⇔ h = f 0 ∧ t = LGENLIST (f ∘ $+ 1) NONE
LGENLIST_CHUNK_GENLIST
⊢ LGENLIST f NONE =
  LAPPEND (fromList (GENLIST f n)) (LGENLIST (f ∘ $+ n) NONE)
LREPEAT_thm
⊢ LREPEAT l = LAPPEND (fromList l) (LREPEAT l)
LREPEAT_NIL
⊢ LREPEAT [] = [||]
LREPEAT_EQ_LNIL
⊢ (LREPEAT l = [||] ⇔ l = []) ∧ ([||] = LREPEAT l ⇔ l = [])
LHD_LREPEAT
⊢ LHD (LREPEAT l) = LHD (fromList l)
LTL_LREPEAT
⊢ LTL (LREPEAT l) = OPTION_MAP (λt. LAPPEND t (LREPEAT l)) (LTL (fromList l))
LLENGTH_LREPEAT
⊢ LLENGTH (LREPEAT l) = if NULL l then SOME 0 else NONE