Theory "normalForms"

Parents     bool

Signature

Constant Type
EXT_POINT :(α -> β) -> (α -> β) -> α
UNIV_POINT :(α -> bool) -> α

Definitions

EXT_POINT_DEF
⊢ ∀f g. f (EXT_POINT f g) = g (EXT_POINT f g) ⇒ f = g
UNIV_POINT_DEF
⊢ ∀p. p (UNIV_POINT p) ⇒ ∀x. p x


Theorems

EXT_POINT
⊢ ∀f g. f (EXT_POINT f g) = g (EXT_POINT f g) ⇔ f = g
UNIV_POINT
⊢ ∀p. p (UNIV_POINT p) ⇔ ∀x. p x