- datatype_index
-
⊢ DATATYPE (index Left_idx Right_idx End_idx)
- index_11
-
⊢ (∀a a'. Left_idx a = Left_idx a' ⇔ a = a') ∧
∀a a'. Right_idx a = Right_idx a' ⇔ a = a'
- index_distinct
-
⊢ (∀a' a. Left_idx a ≠ Right_idx a') ∧ (∀a. Left_idx a ≠ End_idx) ∧
∀a. Right_idx a ≠ End_idx
- index_nchotomy
-
⊢ ∀ii. (∃i. ii = Left_idx i) ∨ (∃i. ii = Right_idx i) ∨ ii = End_idx
- index_Axiom
-
⊢ ∀f0 f1 f2.
∃fn.
(∀a. fn (Left_idx a) = f0 a (fn a)) ∧
(∀a. fn (Right_idx a) = f1 a (fn a)) ∧ fn End_idx = f2
- index_induction
-
⊢ ∀P.
(∀i. P i ⇒ P (Left_idx i)) ∧ (∀i. P i ⇒ P (Right_idx i)) ∧ P End_idx ⇒
∀i. P i
- index_case_cong
-
⊢ ∀M M' f f1 v.
M = M' ∧ (∀a. M' = Left_idx a ⇒ f a = f' a) ∧
(∀a. M' = Right_idx a ⇒ f1 a = f1' a) ∧ (M' = End_idx ⇒ v = v') ⇒
index_CASE M f f1 v = index_CASE M' f' f1' v'
- index_case_eq
-
⊢ index_CASE x f f1 v = v' ⇔
(∃i. x = Left_idx i ∧ f i = v') ∨ (∃i. x = Right_idx i ∧ f1 i = v') ∨
x = End_idx ∧ v = v'
- index_compare_ind
-
⊢ ∀P.
P End_idx End_idx ∧ (∀v10. P End_idx (Left_idx v10)) ∧
(∀v11. P End_idx (Right_idx v11)) ∧ (∀v2. P (Left_idx v2) End_idx) ∧
(∀v3. P (Right_idx v3) End_idx) ∧
(∀n' m'. P n' m' ⇒ P (Left_idx n') (Left_idx m')) ∧
(∀n' m'. P (Left_idx n') (Right_idx m')) ∧
(∀n' m'. P n' m' ⇒ P (Right_idx n') (Right_idx m')) ∧
(∀n' m'. P (Right_idx n') (Left_idx m')) ⇒
∀v v1. P v v1
- index_compare_def
-
⊢ index_compare End_idx End_idx = Equal ∧
(∀v10. index_compare End_idx (Left_idx v10) = Less) ∧
(∀v11. index_compare End_idx (Right_idx v11) = Less) ∧
(∀v2. index_compare (Left_idx v2) End_idx = Greater) ∧
(∀v3. index_compare (Right_idx v3) End_idx = Greater) ∧
(∀n' m'. index_compare (Left_idx n') (Left_idx m') = index_compare n' m') ∧
(∀n' m'. index_compare (Left_idx n') (Right_idx m') = Less) ∧
(∀n' m'. index_compare (Right_idx n') (Right_idx m') = index_compare n' m') ∧
∀n' m'. index_compare (Right_idx n') (Left_idx m') = Greater
- compare_index_equal
-
⊢ ∀i1 i2. index_compare i1 i2 = Equal ⇔ i1 = i2
- compare_list_index
-
⊢ ∀l1 l2. list_cmp index_compare l1 l2 = Equal ⇔ l1 = l2
- datatype_varmap
-
⊢ DATATYPE (varmap Empty_vm Node_vm)
- varmap_11
-
⊢ ∀a0 a1 a2 a0' a1' a2'.
Node_vm a0 a1 a2 = Node_vm a0' a1' a2' ⇔ a0 = a0' ∧ a1 = a1' ∧ a2 = a2'
- varmap_distinct
-
⊢ ∀a2 a1 a0. Empty_vm ≠ Node_vm a0 a1 a2
- varmap_nchotomy
-
⊢ ∀vv. vv = Empty_vm ∨ ∃a v v0. vv = Node_vm a v v0
- varmap_Axiom
-
⊢ ∀f0 f1.
∃fn.
fn Empty_vm = f0 ∧
∀a0 a1 a2. fn (Node_vm a0 a1 a2) = f1 a0 a1 a2 (fn a1) (fn a2)
- varmap_induction
-
⊢ ∀P. P Empty_vm ∧ (∀v v0. P v ∧ P v0 ⇒ ∀a. P (Node_vm a v v0)) ⇒ ∀v. P v
- varmap_case_cong
-
⊢ ∀M M' v f.
M = M' ∧ (M' = Empty_vm ⇒ v = v') ∧
(∀a0 a1 a2. M' = Node_vm a0 a1 a2 ⇒ f a0 a1 a2 = f' a0 a1 a2) ⇒
varmap_CASE M v f = varmap_CASE M' v' f'
- varmap_case_eq
-
⊢ varmap_CASE x v f = v' ⇔
x = Empty_vm ∧ v = v' ∨ ∃a v'' v0. x = Node_vm a v'' v0 ∧ f a v'' v0 = v'
- varmap_find_ind
-
⊢ ∀P.
(∀x v1 v2. P End_idx (Node_vm x v1 v2)) ∧
(∀i1 x v1 v2. P i1 v2 ⇒ P (Right_idx i1) (Node_vm x v1 v2)) ∧
(∀i1 x v1 v2. P i1 v1 ⇒ P (Left_idx i1) (Node_vm x v1 v2)) ∧
(∀i. P i Empty_vm) ⇒
∀v v1. P v v1
- varmap_find_def
-
⊢ (∀x v2 v1. varmap_find End_idx (Node_vm x v1 v2) = x) ∧
(∀x v2 v1 i1.
varmap_find (Right_idx i1) (Node_vm x v1 v2) = varmap_find i1 v2) ∧
(∀x v2 v1 i1.
varmap_find (Left_idx i1) (Node_vm x v1 v2) = varmap_find i1 v1) ∧
∀i. varmap_find i Empty_vm = @x. T