- RAT_EQUIV_REF
-
⊢ ∀a. rat_equiv a a
- RAT_EQUIV_SYM
-
⊢ ∀a b. rat_equiv a b ⇔ rat_equiv b a
- RAT_EQUIV_NMR_Z_IFF
-
⊢ ∀a b. rat_equiv a b ⇒ (frac_nmr a = 0 ⇔ frac_nmr b = 0)
- RAT_EQUIV_NMR_GTZ_IFF
-
⊢ ∀a b. rat_equiv a b ⇒ (frac_nmr a > 0 ⇔ frac_nmr b > 0)
- RAT_EQUIV_NMR_LTZ_IFF
-
⊢ ∀a b. rat_equiv a b ⇒ (frac_nmr a < 0 ⇔ frac_nmr b < 0)
- RAT_NMR_Z_IFF_EQUIV
-
⊢ ∀a b. frac_nmr a = 0 ⇒ (rat_equiv a b ⇔ frac_nmr b = 0)
- RAT_EQUIV_TRANS
-
⊢ ∀a b c. rat_equiv a b ∧ rat_equiv b c ⇒ rat_equiv a c
- RAT_EQUIV
-
⊢ ∀f1 f2. rat_equiv f1 f2 ⇔ rat_equiv f1 = rat_equiv f2
- RAT_EQUIV_ALT
-
⊢ ∀a.
rat_equiv a =
(λx.
∃b c.
0 < b ∧ 0 < c ∧
frac_mul a (abs_frac (b,b)) = frac_mul x (abs_frac (c,c)))
- rat_ABS_REP_CLASS
-
⊢ (∀a. abs_rat_CLASS (rep_rat_CLASS a) = a) ∧
∀c.
(∃r. rat_equiv r r ∧ c = rat_equiv r) ⇔
rep_rat_CLASS (abs_rat_CLASS c) = c
- rat_QUOTIENT
-
⊢ QUOTIENT rat_equiv abs_rat rep_rat
- rat_def
-
⊢ QUOTIENT rat_equiv abs_rat rep_rat
- rat_type_thm
-
⊢ (∀a. abs_rat (rep_rat a) = a) ∧ ∀r s. rat_equiv r s ⇔ abs_rat r = abs_rat s
- rat_equiv_reps
-
⊢ rat_equiv (rep_rat r1) (rep_rat r2) ⇔ r1 = r2
- rat_equiv_rep_abs
-
⊢ rat_equiv (rep_rat (abs_rat f)) f
- rat_of_num_ind
-
⊢ ∀P. P 0 ∧ P (SUC 0) ∧ (∀n. P (SUC n) ⇒ P (SUC (SUC n))) ⇒ ∀v. P v
- rat_of_num_def
-
⊢ 0 = rat_0 ∧ &SUC 0 = rat_1 ∧ ∀n. &SUC (SUC n) = &SUC n + rat_1
- rat_of_num_def_compute
-
⊢ 0 = rat_0 ∧ &SUC 0 = rat_1 ∧
(∀n. &SUC (NUMERAL (BIT1 n)) = &NUMERAL (BIT1 n) + rat_1) ∧
∀n. &SUC (NUMERAL (BIT2 n)) = &NUMERAL (BIT2 n) + rat_1
- rat_0
-
⊢ 0 = abs_rat frac_0
- rat_1
-
⊢ 1 = abs_rat frac_1
- RAT
-
⊢ ∀r. abs_rat (rep_rat r) = r
- RAT_ABS_EQUIV
-
⊢ ∀f1 f2. abs_rat f1 = abs_rat f2 ⇔ rat_equiv f1 f2
- RAT_EQ
-
⊢ ∀f1 f2.
abs_rat f1 = abs_rat f2 ⇔
frac_nmr f1 * frac_dnm f2 = frac_nmr f2 * frac_dnm f1
- RAT_EQ_ALT
-
⊢ ∀r1 r2. r1 = r2 ⇔ rat_nmr r1 * rat_dnm r2 = rat_nmr r2 * rat_dnm r1
- RAT_NMREQ0_CONG
-
⊢ ∀f1. frac_nmr (rep_rat (abs_rat f1)) = 0 ⇔ frac_nmr f1 = 0
- RAT_NMRLT0_CONG
-
⊢ ∀f1. frac_nmr (rep_rat (abs_rat f1)) < 0 ⇔ frac_nmr f1 < 0
- RAT_NMRGT0_CONG
-
⊢ ∀f1. frac_nmr (rep_rat (abs_rat f1)) > 0 ⇔ frac_nmr f1 > 0
- RAT_SGN_CONG
-
⊢ ∀f1. frac_sgn (rep_rat (abs_rat f1)) = frac_sgn f1
- RAT_AINV_CONG
-
⊢ ∀x. abs_rat (frac_ainv (rep_rat (abs_rat x))) = abs_rat (frac_ainv x)
- FRAC_MINV_EQUIV
-
⊢ frac_nmr y ≠ 0 ⇒ rat_equiv x y ⇒ rat_equiv (frac_minv x) (frac_minv y)
- RAT_MINV_CONG
-
⊢ ∀x.
frac_nmr x ≠ 0 ⇒
abs_rat (frac_minv (rep_rat (abs_rat x))) = abs_rat (frac_minv x)
- FRAC_ADD_EQUIV1
-
⊢ rat_equiv x x' ⇒ rat_equiv (frac_add x y) (frac_add x' y)
- RAT_ADD_CONG1
-
⊢ ∀x y. abs_rat (frac_add (rep_rat (abs_rat x)) y) = abs_rat (frac_add x y)
- RAT_ADD_CONG2
-
⊢ ∀x y. abs_rat (frac_add x (rep_rat (abs_rat y))) = abs_rat (frac_add x y)
- RAT_ADD_CONG
-
⊢ (∀x y. abs_rat (frac_add (rep_rat (abs_rat x)) y) = abs_rat (frac_add x y)) ∧
∀x y. abs_rat (frac_add x (rep_rat (abs_rat y))) = abs_rat (frac_add x y)
- FRAC_MUL_EQUIV1
-
⊢ rat_equiv x x' ⇒ rat_equiv (frac_mul x y) (frac_mul x' y)
- FRAC_MUL_EQUIV2
-
⊢ rat_equiv x x' ⇒ rat_equiv (frac_mul y x) (frac_mul y x')
- RAT_MUL_CONG1
-
⊢ ∀x y. abs_rat (frac_mul (rep_rat (abs_rat x)) y) = abs_rat (frac_mul x y)
- RAT_MUL_CONG2
-
⊢ ∀x y. abs_rat (frac_mul x (rep_rat (abs_rat y))) = abs_rat (frac_mul x y)
- RAT_MUL_CONG
-
⊢ (∀x y. abs_rat (frac_mul (rep_rat (abs_rat x)) y) = abs_rat (frac_mul x y)) ∧
∀x y. abs_rat (frac_mul x (rep_rat (abs_rat y))) = abs_rat (frac_mul x y)
- RAT_SUB_CONG1
-
⊢ ∀x y. abs_rat (frac_sub (rep_rat (abs_rat x)) y) = abs_rat (frac_sub x y)
- RAT_SUB_CONG2
-
⊢ ∀x y. abs_rat (frac_sub x (rep_rat (abs_rat y))) = abs_rat (frac_sub x y)
- RAT_SUB_CONG
-
⊢ (∀x y. abs_rat (frac_sub (rep_rat (abs_rat x)) y) = abs_rat (frac_sub x y)) ∧
∀x y. abs_rat (frac_sub x (rep_rat (abs_rat y))) = abs_rat (frac_sub x y)
- RAT_DIV_CONG1
-
⊢ ∀x y.
frac_nmr y ≠ 0 ⇒
abs_rat (frac_div (rep_rat (abs_rat x)) y) = abs_rat (frac_div x y)
- RAT_DIV_CONG2
-
⊢ ∀x y.
frac_nmr y ≠ 0 ⇒
abs_rat (frac_div x (rep_rat (abs_rat y))) = abs_rat (frac_div x y)
- RAT_DIV_CONG
-
⊢ (∀x y.
frac_nmr y ≠ 0 ⇒
abs_rat (frac_div (rep_rat (abs_rat x)) y) = abs_rat (frac_div x y)) ∧
∀x y.
frac_nmr y ≠ 0 ⇒
abs_rat (frac_div x (rep_rat (abs_rat y))) = abs_rat (frac_div x y)
- RAT_NMRDNM_EQ
-
⊢ abs_rat (abs_frac (frac_nmr f1,frac_dnm f1)) = 1 ⇔ frac_nmr f1 = frac_dnm f1
- RAT_AINV_CALCULATE
-
⊢ ∀f1. -abs_rat f1 = abs_rat (frac_ainv f1)
- RAT_MINV_CALCULATE
-
⊢ ∀f1. 0 ≠ frac_nmr f1 ⇒ rat_minv (abs_rat f1) = abs_rat (frac_minv f1)
- RAT_ADD_CALCULATE
-
⊢ ∀f1 f2. abs_rat f1 + abs_rat f2 = abs_rat (frac_add f1 f2)
- RAT_SUB_CALCULATE
-
⊢ ∀f1 f2. abs_rat f1 − abs_rat f2 = abs_rat (frac_sub f1 f2)
- RAT_MUL_CALCULATE
-
⊢ ∀f1 f2. abs_rat f1 * abs_rat f2 = abs_rat (frac_mul f1 f2)
- RAT_DIV_CALCULATE
-
⊢ ∀f1 f2. frac_nmr f2 ≠ 0 ⇒ abs_rat f1 / abs_rat f2 = abs_rat (frac_div f1 f2)
- RAT_EQ_CALCULATE
-
⊢ ∀f1 f2.
abs_rat f1 = abs_rat f2 ⇔
frac_nmr f1 * frac_dnm f2 = frac_nmr f2 * frac_dnm f1
- RAT_LES_CALCULATE
-
⊢ ∀f1 f2.
abs_rat f1 < abs_rat f2 ⇔
frac_nmr f1 * frac_dnm f2 < frac_nmr f2 * frac_dnm f1
- RAT_LEQ_CALCULATE
-
⊢ ∀f1 f2.
abs_rat f1 ≤ abs_rat f2 ⇔
frac_nmr f1 * frac_dnm f2 ≤ frac_nmr f2 * frac_dnm f1
- RAT_OF_NUM_CALCULATE
-
⊢ ∀n1. &n1 = abs_rat (abs_frac (&n1,1))
- RAT_OF_NUM_LEQ
-
⊢ &a ≤ &b ⇔ a ≤ b
- RAT_OF_NUM_LES
-
⊢ &a < &b ⇔ a < b
- RAT_EQ0_NMR
-
⊢ ∀r1. r1 = 0 ⇔ rat_nmr r1 = 0
- RAT_0LES_NMR
-
⊢ ∀r1. 0 < r1 ⇔ 0 < rat_nmr r1
- RAT_LES0_NMR
-
⊢ ∀r1. r1 < 0 ⇔ rat_nmr r1 < 0
- RAT_0LEQ_NMR
-
⊢ ∀r1. 0 ≤ r1 ⇔ 0 ≤ rat_nmr r1
- RAT_LEQ0_NMR
-
⊢ ∀r1. r1 ≤ 0 ⇔ rat_nmr r1 ≤ 0
- RAT_ADD_ASSOC
-
⊢ ∀a b c. a + (b + c) = a + b + c
- RAT_MUL_ASSOC
-
⊢ ∀a b c. a * (b * c) = a * b * c
- RAT_ADD_COMM
-
⊢ ∀a b. a + b = b + a
- RAT_MUL_COMM
-
⊢ ∀a b. a * b = b * a
- RAT_ADD_RID
-
⊢ ∀a. a + 0 = a
- RAT_ADD_LID
-
⊢ ∀a. 0 + a = a
- RAT_MUL_RID
-
⊢ ∀a. a * 1 = a
- RAT_MUL_LID
-
⊢ ∀a. 1 * a = a
- RAT_ADD_RINV
-
⊢ ∀a. a + -a = 0
- RAT_ADD_LINV
-
⊢ ∀a. -a + a = 0
- RAT_MUL_RINV
-
⊢ ∀a. a ≠ 0 ⇒ a * rat_minv a = 1
- RAT_MUL_LINV
-
⊢ ∀a. a ≠ 0 ⇒ rat_minv a * a = 1
- RAT_RDISTRIB
-
⊢ ∀a b c. (a + b) * c = a * c + b * c
- RAT_LDISTRIB
-
⊢ ∀a b c. c * (a + b) = c * a + c * b
- RAT_1_NOT_0
-
⊢ 1 ≠ 0
- RAT_MUL_LZERO
-
⊢ ∀r1. 0 * r1 = 0
- RAT_MUL_RZERO
-
⊢ ∀r1. r1 * 0 = 0
- RAT_SUB_ADDAINV
-
⊢ ∀r1 r2. r1 − r2 = r1 + -r2
- RAT_DIV_MULMINV
-
⊢ ∀r1 r2. r1 / r2 = r1 * rat_minv r2
- RAT_DIV_0
-
⊢ 0 / x = 0
- RAT_AINV_0
-
⊢ -0 = 0
- RAT_AINV_AINV
-
⊢ ∀r1. - -r1 = r1
- RAT_AINV_ADD
-
⊢ ∀r1 r2. -(r1 + r2) = -r1 + -r2
- RAT_AINV_SUB
-
⊢ ∀r1 r2. -(r1 − r2) = r2 − r1
- RAT_AINV_RMUL
-
⊢ ∀r1 r2. -(r1 * r2) = r1 * -r2
- RAT_AINV_LMUL
-
⊢ ∀r1 r2. -(r1 * r2) = -r1 * r2
- RAT_AINV_EQ
-
⊢ ∀r1 r2. -r1 = r2 ⇔ r1 = -r2
- RAT_EQ_AINV
-
⊢ ∀r1 r2. -r1 = -r2 ⇔ r1 = r2
- RAT_AINV_MINV
-
⊢ ∀r1. r1 ≠ 0 ⇒ -rat_minv r1 = rat_minv (-r1)
- RAT_SUB_RDISTRIB
-
⊢ ∀a b c. (a − b) * c = a * c − b * c
- RAT_SUB_LDISTRIB
-
⊢ ∀a b c. c * (a − b) = c * a − c * b
- RAT_SUB_LID
-
⊢ ∀r1. 0 − r1 = -r1
- RAT_SUB_RID
-
⊢ ∀r1. r1 − 0 = r1
- RAT_SUB_ID
-
⊢ ∀r. r − r = 0
- RAT_EQ_SUB0
-
⊢ ∀r1 r2. r1 − r2 = 0 ⇔ r1 = r2
- RAT_EQ_0SUB
-
⊢ ∀r1 r2. 0 = r1 − r2 ⇔ r1 = r2
- RAT_SGN_CALCULATE
-
⊢ rat_sgn (abs_rat f1) = frac_sgn f1
- RAT_SGN_CLAUSES
-
⊢ ∀r1.
(rat_sgn r1 = -1 ⇔ r1 < 0) ∧ (rat_sgn r1 = 0 ⇔ r1 = 0) ∧
(rat_sgn r1 = 1 ⇔ r1 > 0)
- RAT_SGN_0
-
⊢ rat_sgn 0 = 0
- RAT_SGN_AINV
-
⊢ ∀r1. -rat_sgn (-r1) = rat_sgn r1
- RAT_SGN_MUL
-
⊢ ∀r1 r2. rat_sgn (r1 * r2) = rat_sgn r1 * rat_sgn r2
- RAT_SGN_MINV
-
⊢ ∀r1. r1 ≠ 0 ⇒ rat_sgn (rat_minv r1) = rat_sgn r1
- RAT_SGN_TOTAL
-
⊢ ∀r1. rat_sgn r1 = -1 ∨ rat_sgn r1 = 0 ∨ rat_sgn r1 = 1
- RAT_SGN_COMPLEMENT
-
⊢ ∀r1.
(rat_sgn r1 ≠ -1 ⇔ rat_sgn r1 = 0 ∨ rat_sgn r1 = 1) ∧
(rat_sgn r1 ≠ 0 ⇔ rat_sgn r1 = -1 ∨ rat_sgn r1 = 1) ∧
(rat_sgn r1 ≠ 1 ⇔ rat_sgn r1 = -1 ∨ rat_sgn r1 = 0)
- RAT_LES_REF
-
⊢ ∀r1. ¬(r1 < r1)
- RAT_LES_ANTISYM
-
⊢ ∀r1 r2. r1 < r2 ⇒ ¬(r2 < r1)
- RAT_LES_TRANS
-
⊢ ∀r1 r2 r3. r1 < r2 ∧ r2 < r3 ⇒ r1 < r3
- RAT_LES_TOTAL
-
⊢ ∀r1 r2. r1 < r2 ∨ r1 = r2 ∨ r2 < r1
- RAT_LEQ_REF
-
⊢ ∀r1. r1 ≤ r1
- RAT_LEQ_ANTISYM
-
⊢ ∀r1 r2. r1 ≤ r2 ∧ r2 ≤ r1 ⇒ r1 = r2
- RAT_LEQ_TRANS
-
⊢ ∀r1 r2 r3. r1 ≤ r2 ∧ r2 ≤ r3 ⇒ r1 ≤ r3
- RAT_LES_01
-
⊢ 0 < 1
- RAT_LES_IMP_LEQ
-
⊢ ∀r1 r2. r1 < r2 ⇒ r1 ≤ r2
- RAT_LES_IMP_NEQ
-
⊢ ∀r1 r2. r1 < r2 ⇒ r1 ≠ r2
- RAT_LEQ_LES
-
⊢ ∀r1 r2. ¬(r2 < r1) ⇔ r1 ≤ r2
- RAT_LES_LEQ
-
⊢ ∀r1 r2. ¬(r2 ≤ r1) ⇔ r1 < r2
- RAT_LES_LEQ2
-
⊢ ∀r1 r2. r1 < r2 ⇔ r1 ≤ r2 ∧ ¬(r2 ≤ r1)
- RAT_LES_LEQ_TRANS
-
⊢ ∀a b c. a < b ∧ b ≤ c ⇒ a < c
- RAT_LEQ_LES_TRANS
-
⊢ ∀a b c. a ≤ b ∧ b < c ⇒ a < c
- RAT_0LES_0LES_ADD
-
⊢ ∀r1 r2. 0 < r1 ⇒ 0 < r2 ⇒ 0 < r1 + r2
- RAT_LES0_LES0_ADD
-
⊢ ∀r1 r2. r1 < 0 ⇒ r2 < 0 ⇒ r1 + r2 < 0
- RAT_0LES_0LEQ_ADD
-
⊢ ∀r1 r2. 0 < r1 ⇒ 0 ≤ r2 ⇒ 0 < r1 + r2
- RAT_LES0_LEQ0_ADD
-
⊢ ∀r1 r2. r1 < 0 ⇒ r2 ≤ 0 ⇒ r1 + r2 < 0
- RAT_LSUB_EQ
-
⊢ ∀r1 r2 r3. r1 − r2 = r3 ⇔ r1 = r2 + r3
- RAT_RSUB_EQ
-
⊢ ∀r1 r2 r3. r1 = r2 − r3 ⇔ r1 + r3 = r2
- RAT_LDIV_EQ
-
⊢ ∀r1 r2 r3. r2 ≠ 0 ⇒ (r1 / r2 = r3 ⇔ r1 = r2 * r3)
- RAT_RDIV_EQ
-
⊢ ∀r1 r2 r3. r3 ≠ 0 ⇒ (r1 = r2 / r3 ⇔ r1 * r3 = r2)
- RAT_AINV_ONE_ONE
-
⊢ ONE_ONE numeric_negate
- RAT_ADD_ONE_ONE
-
⊢ ∀r1. ONE_ONE ($+ r1)
- RAT_MUL_ONE_ONE
-
⊢ ∀r1. r1 ≠ 0 ⇔ ONE_ONE ($* r1)
- RAT_EQ_LADD
-
⊢ ∀r1 r2 r3. r3 + r1 = r3 + r2 ⇔ r1 = r2
- RAT_EQ_RADD
-
⊢ ∀r1 r2 r3. r1 + r3 = r2 + r3 ⇔ r1 = r2
- RAT_EQ_RMUL
-
⊢ ∀r1 r2 r3. r3 ≠ 0 ⇒ (r1 * r3 = r2 * r3 ⇔ r1 = r2)
- RAT_EQ_LMUL
-
⊢ ∀r1 r2 r3. r3 ≠ 0 ⇒ (r3 * r1 = r3 * r2 ⇔ r1 = r2)
- RAT_LES_RADD
-
⊢ ∀r1 r2 r3. r1 + r3 < r2 + r3 ⇔ r1 < r2
- RAT_LES_LADD
-
⊢ ∀r1 r2 r3. r3 + r1 < r3 + r2 ⇔ r1 < r2
- RAT_LEQ_RADD
-
⊢ ∀r1 r2 r3. r1 + r3 ≤ r2 + r3 ⇔ r1 ≤ r2
- RAT_LEQ_LADD
-
⊢ ∀r1 r2 r3. r3 + r1 ≤ r3 + r2 ⇔ r1 ≤ r2
- RAT_ADD_MONO
-
⊢ ∀a b c d. a ≤ b ∧ c ≤ d ⇒ a + c ≤ b + d
- RAT_LES_AINV
-
⊢ ∀r1 r2. -r1 < -r2 ⇔ r2 < r1
- RAT_LSUB_LES
-
⊢ ∀r1 r2 r3. r1 − r2 < r3 ⇔ r1 < r2 + r3
- RAT_RSUB_LES
-
⊢ ∀r1 r2 r3. r1 < r2 − r3 ⇔ r1 + r3 < r2
- RAT_LSUB_LEQ
-
⊢ ∀r1 r2 r3. r1 − r2 ≤ r3 ⇔ r1 ≤ r2 + r3
- RAT_RSUB_LEQ
-
⊢ ∀r1 r2 r3. r1 ≤ r2 − r3 ⇔ r1 + r3 ≤ r2
- RAT_LES_RMUL_POS
-
⊢ ∀r1 r2 r3. 0 < r3 ⇒ (r1 * r3 < r2 * r3 ⇔ r1 < r2)
- RAT_LES_LMUL_POS
-
⊢ ∀r1 r2 r3. 0 < r3 ⇒ (r3 * r1 < r3 * r2 ⇔ r1 < r2)
- RAT_LES_RMUL_NEG
-
⊢ ∀r1 r2 r3. r3 < 0 ⇒ (r2 * r3 < r1 * r3 ⇔ r1 < r2)
- RAT_LES_LMUL_NEG
-
⊢ ∀r1 r2 r3. r3 < 0 ⇒ (r3 * r2 < r3 * r1 ⇔ r1 < r2)
- RAT_AINV_LES
-
⊢ ∀r1 r2. -r1 < r2 ⇔ -r2 < r1
- RAT_LDIV_LES_POS
-
⊢ ∀r1 r2 r3. 0 < r2 ⇒ (r1 / r2 < r3 ⇔ r1 < r2 * r3)
- RAT_LDIV_LES_NEG
-
⊢ ∀r1 r2 r3. r2 < 0 ⇒ (r1 / r2 < r3 ⇔ r2 * r3 < r1)
- RAT_RDIV_LES_POS
-
⊢ ∀r1 r2 r3. 0 < r3 ⇒ (r1 < r2 / r3 ⇔ r1 * r3 < r2)
- RAT_RDIV_LES_NEG
-
⊢ ∀r1 r2 r3. r3 < 0 ⇒ (r1 < r2 / r3 ⇔ r2 < r1 * r3)
- RAT_LDIV_LEQ_POS
-
⊢ ∀r1 r2 r3. 0 < r2 ⇒ (r1 / r2 ≤ r3 ⇔ r1 ≤ r2 * r3)
- RAT_LDIV_LEQ_NEG
-
⊢ ∀r1 r2 r3. r2 < 0 ⇒ (r1 / r2 ≤ r3 ⇔ r2 * r3 ≤ r1)
- RAT_RDIV_LEQ_POS
-
⊢ ∀r1 r2 r3. 0 < r3 ⇒ (r1 ≤ r2 / r3 ⇔ r1 * r3 ≤ r2)
- RAT_RDIV_LEQ_NEG
-
⊢ ∀r1 r2 r3. r3 < 0 ⇒ (r1 ≤ r2 / r3 ⇔ r2 ≤ r1 * r3)
- RAT_LES_SUB0
-
⊢ ∀r1 r2. r1 − r2 < 0 ⇔ r1 < r2
- RAT_LES_0SUB
-
⊢ ∀r1 r2. 0 < r1 − r2 ⇔ r2 < r1
- RAT_MINV_LES
-
⊢ ∀r1. 0 < r1 ⇒ (rat_minv r1 < 0 ⇔ r1 < 0) ∧ (0 < rat_minv r1 ⇔ 0 < r1)
- RAT_MUL_SIGN_CASES
-
⊢ ∀p q.
(0 < p * q ⇔ 0 < p ∧ 0 < q ∨ p < 0 ∧ q < 0) ∧
(p * q < 0 ⇔ 0 < p ∧ q < 0 ∨ p < 0 ∧ 0 < q)
- RAT_NO_ZERODIV
-
⊢ ∀r1 r2. r1 = 0 ∨ r2 = 0 ⇔ r1 * r2 = 0
- RAT_NO_ZERODIV_THM
-
⊢ ∀r1 r2. r1 * r2 = 0 ⇔ r1 = 0 ∨ r2 = 0
- RAT_NO_ZERODIV_NEG
-
⊢ ∀r1 r2. r1 * r2 ≠ 0 ⇔ r1 ≠ 0 ∧ r2 ≠ 0
- RAT_NO_IDDIV
-
⊢ ∀r1 r2. r1 * r2 = r2 ⇔ r1 = 1 ∨ r2 = 0
- RDIV_MUL_OUT
-
⊢ r1 * (r2 / r3) = r1 * r2 / r3
- LDIV_MUL_OUT
-
⊢ r1 / r2 * r3 = r1 * r3 / r2
- RAT_DENSE_THM
-
⊢ ∀r1 r3. r1 < r3 ⇒ ∃r2. r1 < r2 ∧ r2 < r3
- RAT_SAVE
-
⊢ ∀r1. ∃a1 b1. r1 = abs_rat (frac_save a1 b1)
- RAT_SAVE_MINV
-
⊢ ∀a1 b1.
abs_rat (frac_save a1 b1) ≠ 0 ⇒
rat_minv (abs_rat (frac_save a1 b1)) =
abs_rat (frac_save (SGN a1 * (&b1 + 1)) (Num (ABS a1 − 1)))
- RAT_SAVE_TO_CONS
-
⊢ ∀a1 b1. abs_rat (frac_save a1 b1) = a1 // (&b1 + 1)
- RAT_OF_NUM
-
⊢ ∀n. 0 = rat_0 ∧ ∀n. &SUC n = &n + rat_1
- RAT_SAVE_NUM
-
⊢ ∀n. &n = abs_rat (frac_save (&n) 0)
- RAT_CONS_TO_NUM
-
⊢ ∀n. &n // 1 = &n ∧ -&n // 1 = -&n
- RAT_0
-
⊢ rat_0 = 0
- RAT_1
-
⊢ rat_1 = 1
- RAT_MINV_1
-
⊢ rat_minv 1 = 1
- RAT_DIV_1
-
⊢ r / 1 = r
- RAT_DIV_NEG1
-
⊢ r / -1 = -r
- RAT_DIV_INV
-
⊢ r ≠ 0 ⇒ r / r = 1
- RAT_MINV_MUL
-
⊢ a ≠ 0 ∧ b ≠ 0 ⇒ rat_minv (a * b) = rat_minv a * rat_minv b
- RAT_DIVDIV_MUL
-
⊢ b ≠ 0 ∧ d ≠ 0 ⇒ a / b * (c / d) = a * c / (b * d)
- RAT_DIVDIV_ADD
-
⊢ y ≠ 0 ∧ b ≠ 0 ⇒ x / y + a / b = (x * b + a * y) / (y * b)
- RAT_DIV_AINV
-
⊢ -(x / y) = -x / y
- RAT_MINV_EQ_0
-
⊢ r ≠ 0 ⇒ rat_minv r ≠ 0
- RAT_DIV_MINV
-
⊢ x ≠ 0 ∧ y ≠ 0 ⇒ rat_minv (x / y) = y / x
- RAT_DIV_EQ0
-
⊢ d ≠ 0 ⇒ (n / d = 0 ⇔ n = 0) ∧ (0 = n / d ⇔ n = 0)
- RAT_ADD_NUM_CALCULATE
-
⊢ (∀n m. &n + &m = &(n + m)) ∧
(∀n m. -&n + &m = if n ≤ m then &(m − n) else -&(n − m)) ∧
(∀n m. &n + -&m = if m ≤ n then &(n − m) else -&(m − n)) ∧
∀n m. -&n + -&m = -&(n + m)
- RAT_MUL_NUM_CALCULATE
-
⊢ (∀n m. &n * &m = &(n * m)) ∧ (∀n m. -&n * &m = -&(n * m)) ∧
(∀n m. &n * -&m = -&(n * m)) ∧ ∀n m. -&n * -&m = &(n * m)
- RAT_EQ_NUM_CALCULATE
-
⊢ (∀n m. &n = &m ⇔ n = m) ∧ (∀n m. &n = -&m ⇔ n = 0 ∧ m = 0) ∧
(∀n m. -&n = &m ⇔ n = 0 ∧ m = 0) ∧ ∀n m. -&n = -&m ⇔ n = m
- RAT_LT_NUM_CALCULATE
-
⊢ (&a < &b ⇔ a < b) ∧ (-&m < &n ⇔ 0 < m ∨ 0 < n) ∧ (&m < -&n ⇔ F) ∧
(-&m < -&n ⇔ n < m)
- RAT_LE_NUM_CALCULATE
-
⊢ (&a ≤ &b ⇔ a ≤ b) ∧ (-&m ≤ &n ⇔ T) ∧ (&m ≤ -&n ⇔ m = 0 ∧ n = 0) ∧
(-&m ≤ -&n ⇔ n ≤ m)
- rat_of_int_11
-
⊢ rat_of_int i1 = rat_of_int i2 ⇔ i1 = i2
- rat_of_int_of_num
-
⊢ rat_of_int (&x) = &x
- rat_of_int_MUL
-
⊢ rat_of_int x * rat_of_int y = rat_of_int (x * y)
- rat_of_int_ADD
-
⊢ rat_of_int x + rat_of_int y = rat_of_int (x + y)
- rat_of_int_LE
-
⊢ rat_of_int i ≤ rat_of_int j ⇔ i ≤ j
- rat_of_int_LT
-
⊢ rat_of_int i < rat_of_int j ⇔ i < j
- rat_of_int_ainv
-
⊢ rat_of_int (-i) = -rat_of_int i
- RAT_OF_INT_CALCULATE
-
⊢ ∀i. rat_of_int i = abs_rat (abs_frac (i,1))
- RATD_NZERO
-
⊢ 0 < RATD r ∧ RATD r ≠ 0
- RATN_LEAST
-
⊢ ∀n' d'. r = rat_of_int n' / &d' ∧ 0 < d' ⇒ ABS (RATN r) ≤ ABS n'
- RATN_RATD_EQ_THM
-
⊢ r = rat_of_int (RATN r) / &RATD r
- RATN_RATD_MULT
-
⊢ r * &RATD r = rat_of_int (RATN r)
- RATND_RAT_OF_NUM
-
⊢ RATN (&n) = &n ∧ RATD (&n) = 1
- RATN_EQ0
-
⊢ (RATN r = 0 ⇔ r = 0) ∧ (0 = RATN r ⇔ r = 0)
- RATN_SIGN
-
⊢ (0 < RATN x ⇔ 0 < x) ∧ (0 ≤ RATN x ⇔ 0 ≤ x) ∧ (RATN x < 0 ⇔ x < 0) ∧
(RATN x ≤ 0 ⇔ x ≤ 0)
- RAT_AINV_SGN
-
⊢ (0 < -r ⇔ r < 0) ∧ (-r < 0 ⇔ 0 < r)
- RATN_NEG
-
⊢ RATN (-r) = -RATN r
- RATD_NEG
-
⊢ RATD (-r) = RATD r
- RATN_RATD_RAT_OF_INT
-
⊢ RATN (rat_of_int i) = i ∧ RATD (rat_of_int i) = 1
- RATN_DIV_RATD
-
⊢ rat_of_int (RATN r) / &RATD r = r
- RAT_AINV_EQ_NUM
-
⊢ -x = &n ⇔ x = rat_of_int (-&n)
- RAT_SGN_NUM_COND
-
⊢ rat_sgn (&n) = if n = 0 then 0 else 1
- RAT_SGN_AINV_RWT
-
⊢ rat_sgn (-r) = -rat_sgn r
- RAT_SGN_ALT
-
⊢ rat_sgn r = SGN (RATN r)
- RAT_SGN_NUM_BITs
-
⊢ rat_sgn (&NUMERAL (BIT1 n)) = 1 ∧ rat_sgn (&NUMERAL (BIT2 n)) = 1
- RAT_SGN_EQ0
-
⊢ (rat_sgn r = 0 ⇔ r = 0) ∧ (0 = rat_sgn r ⇔ r = 0)
- RAT_SGN_POS
-
⊢ rat_sgn r = 1 ⇔ 0 < r
- RAT_SGN_NEG
-
⊢ rat_sgn r = -1 ⇔ r < 0
- RAT_SGN_DIV
-
⊢ d ≠ 0 ⇒ rat_sgn (n / d) = rat_sgn n * rat_sgn d
- RAT_MINV_RATND
-
⊢ r ≠ 0 ⇒
rat_minv r = rat_of_int (rat_sgn r) * &RATD r / rat_of_int (ABS (RATN r))