Theory "ring"

Parents     semi_ring

Signature

Type Arity
ring 1
Constant Type
is_ring :α ring -> bool
recordtype.ring :α -> α -> (α -> α -> α) -> (α -> α -> α) -> (α -> α) -> α ring
ring_CASE :α ring -> (α -> α -> (α -> α -> α) -> (α -> α -> α) -> (α -> α) -> β) -> β
ring_R0 :α ring -> α
ring_R0_fupd :(α -> α) -> α ring -> α ring
ring_R1 :α ring -> α
ring_R1_fupd :(α -> α) -> α ring -> α ring
ring_RM :α ring -> α -> α -> α
ring_RM_fupd :((α -> α -> α) -> α -> α -> α) -> α ring -> α ring
ring_RN :α ring -> α -> α
ring_RN_fupd :((α -> α) -> α -> α) -> α ring -> α ring
ring_RP :α ring -> α -> α -> α
ring_RP_fupd :((α -> α -> α) -> α -> α -> α) -> α ring -> α ring
ring_size :(α -> num) -> α ring -> num
semi_ring_of :α ring -> α semi_ring

Definitions

ring_TY_DEF
⊢ ∃rep.
      TYPE_DEFINITION
        (λa0'.
             ∀'ring' .
                 (∀a0'.
                      (∃a0 a1 a2 a3 a4.
                           a0' =
                           (λa0 a1 a2 a3 a4.
                                ind_type$CONSTR 0 (a0,a1,a2,a3,a4)
                                  (λn. ind_type$BOTTOM)) a0 a1 a2 a3 a4) ⇒
                      'ring' a0') ⇒
                 'ring' a0') rep
ring_case_def
⊢ ∀a0 a1 a2 a3 a4 f. ring_CASE (ring a0 a1 a2 a3 a4) f = f a0 a1 a2 a3 a4
ring_size_def
⊢ ∀f a0 a1 a2 a3 a4. ring_size f (ring a0 a1 a2 a3 a4) = 1 + (f a0 + f a1)
ring_R0
⊢ ∀a a0 f f0 f1. (ring a a0 f f0 f1).R0 = a
ring_R1
⊢ ∀a a0 f f0 f1. (ring a a0 f f0 f1).R1 = a0
ring_RP
⊢ ∀a a0 f f0 f1. (ring a a0 f f0 f1).RP = f
ring_RM
⊢ ∀a a0 f f0 f1. (ring a a0 f f0 f1).RM = f0
ring_RN
⊢ ∀a a0 f f0 f1. (ring a a0 f f0 f1).RN = f1
ring_R0_fupd
⊢ ∀f2 a a0 f f0 f1.
      ring a a0 f f0 f1 with R0 updated_by f2 = ring (f2 a) a0 f f0 f1
ring_R1_fupd
⊢ ∀f2 a a0 f f0 f1.
      ring a a0 f f0 f1 with R1 updated_by f2 = ring a (f2 a0) f f0 f1
ring_RP_fupd
⊢ ∀f2 a a0 f f0 f1.
      ring a a0 f f0 f1 with RP updated_by f2 = ring a a0 (f2 f) f0 f1
ring_RM_fupd
⊢ ∀f2 a a0 f f0 f1.
      ring a a0 f f0 f1 with RM updated_by f2 = ring a a0 f (f2 f0) f1
ring_RN_fupd
⊢ ∀f2 a a0 f f0 f1.
      ring a a0 f f0 f1 with RN updated_by f2 = ring a a0 f f0 (f2 f1)
is_ring_def
⊢ ∀r.
      is_ring r ⇔
      (∀n m. r.RP n m = r.RP m n) ∧
      (∀n m p. r.RP n (r.RP m p) = r.RP (r.RP n m) p) ∧
      (∀n m. r.RM n m = r.RM m n) ∧
      (∀n m p. r.RM n (r.RM m p) = r.RM (r.RM n m) p) ∧
      (∀n. r.RP r.R0 n = n) ∧ (∀n. r.RM r.R1 n = n) ∧
      (∀n. r.RP n (r.RN n) = r.R0) ∧
      ∀n m p. r.RM (r.RP n m) p = r.RP (r.RM n p) (r.RM m p)
semi_ring_of_def
⊢ ∀r. semi_ring_of r = semi_ring r.R0 r.R1 r.RP r.RM


Theorems

ring_accessors
⊢ (∀a a0 f f0 f1. (ring a a0 f f0 f1).R0 = a) ∧
  (∀a a0 f f0 f1. (ring a a0 f f0 f1).R1 = a0) ∧
  (∀a a0 f f0 f1. (ring a a0 f f0 f1).RP = f) ∧
  (∀a a0 f f0 f1. (ring a a0 f f0 f1).RM = f0) ∧
  ∀a a0 f f0 f1. (ring a a0 f f0 f1).RN = f1
ring_fn_updates
⊢ (∀f2 a a0 f f0 f1.
       ring a a0 f f0 f1 with R0 updated_by f2 = ring (f2 a) a0 f f0 f1) ∧
  (∀f2 a a0 f f0 f1.
       ring a a0 f f0 f1 with R1 updated_by f2 = ring a (f2 a0) f f0 f1) ∧
  (∀f2 a a0 f f0 f1.
       ring a a0 f f0 f1 with RP updated_by f2 = ring a a0 (f2 f) f0 f1) ∧
  (∀f2 a a0 f f0 f1.
       ring a a0 f f0 f1 with RM updated_by f2 = ring a a0 f (f2 f0) f1) ∧
  ∀f2 a a0 f f0 f1.
      ring a a0 f f0 f1 with RN updated_by f2 = ring a a0 f f0 (f2 f1)
ring_accfupds
⊢ (∀r f. (r with R1 updated_by f).R0 = r.R0) ∧
  (∀r f. (r with RP updated_by f).R0 = r.R0) ∧
  (∀r f. (r with RM updated_by f).R0 = r.R0) ∧
  (∀r f. (r with RN updated_by f).R0 = r.R0) ∧
  (∀r f. (r with R0 updated_by f).R1 = r.R1) ∧
  (∀r f. (r with RP updated_by f).R1 = r.R1) ∧
  (∀r f. (r with RM updated_by f).R1 = r.R1) ∧
  (∀r f. (r with RN updated_by f).R1 = r.R1) ∧
  (∀r f. (r with R0 updated_by f).RP = r.RP) ∧
  (∀r f. (r with R1 updated_by f).RP = r.RP) ∧
  (∀r f. (r with RM updated_by f).RP = r.RP) ∧
  (∀r f. (r with RN updated_by f).RP = r.RP) ∧
  (∀r f. (r with R0 updated_by f).RM = r.RM) ∧
  (∀r f. (r with R1 updated_by f).RM = r.RM) ∧
  (∀r f. (r with RP updated_by f).RM = r.RM) ∧
  (∀r f. (r with RN updated_by f).RM = r.RM) ∧
  (∀r f. (r with R0 updated_by f).RN = r.RN) ∧
  (∀r f. (r with R1 updated_by f).RN = r.RN) ∧
  (∀r f. (r with RP updated_by f).RN = r.RN) ∧
  (∀r f. (r with RM updated_by f).RN = r.RN) ∧
  (∀r f. (r with R0 updated_by f).R0 = f r.R0) ∧
  (∀r f. (r with R1 updated_by f).R1 = f r.R1) ∧
  (∀r f. (r with RP updated_by f).RP = f r.RP) ∧
  (∀r f. (r with RM updated_by f).RM = f r.RM) ∧
  ∀r f. (r with RN updated_by f).RN = f r.RN
ring_fupdfupds
⊢ (∀r g f.
       r with <|R0 updated_by f; R0 updated_by g|> =
       r with R0 updated_by f ∘ g) ∧
  (∀r g f.
       r with <|R1 updated_by f; R1 updated_by g|> =
       r with R1 updated_by f ∘ g) ∧
  (∀r g f.
       r with <|RP updated_by f; RP updated_by g|> =
       r with RP updated_by f ∘ g) ∧
  (∀r g f.
       r with <|RM updated_by f; RM updated_by g|> =
       r with RM updated_by f ∘ g) ∧
  ∀r g f.
      r with <|RN updated_by f; RN updated_by g|> = r with RN updated_by f ∘ g
ring_fupdfupds_comp
⊢ ((∀g f. R0_fupd f ∘ R0_fupd g = R0_fupd (f ∘ g)) ∧
   ∀h g f. R0_fupd f ∘ R0_fupd g ∘ h = R0_fupd (f ∘ g) ∘ h) ∧
  ((∀g f. R1_fupd f ∘ R1_fupd g = R1_fupd (f ∘ g)) ∧
   ∀h g f. R1_fupd f ∘ R1_fupd g ∘ h = R1_fupd (f ∘ g) ∘ h) ∧
  ((∀g f. RP_fupd f ∘ RP_fupd g = RP_fupd (f ∘ g)) ∧
   ∀h g f. RP_fupd f ∘ RP_fupd g ∘ h = RP_fupd (f ∘ g) ∘ h) ∧
  ((∀g f. RM_fupd f ∘ RM_fupd g = RM_fupd (f ∘ g)) ∧
   ∀h g f. RM_fupd f ∘ RM_fupd g ∘ h = RM_fupd (f ∘ g) ∘ h) ∧
  (∀g f. RN_fupd f ∘ RN_fupd g = RN_fupd (f ∘ g)) ∧
  ∀h g f. RN_fupd f ∘ RN_fupd g ∘ h = RN_fupd (f ∘ g) ∘ h
ring_fupdcanon
⊢ (∀r g f.
       r with <|R1 updated_by f; R0 updated_by g|> =
       r with <|R0 updated_by g; R1 updated_by f|>) ∧
  (∀r g f.
       r with <|RP updated_by f; R0 updated_by g|> =
       r with <|R0 updated_by g; RP updated_by f|>) ∧
  (∀r g f.
       r with <|RP updated_by f; R1 updated_by g|> =
       r with <|R1 updated_by g; RP updated_by f|>) ∧
  (∀r g f.
       r with <|RM updated_by f; R0 updated_by g|> =
       r with <|R0 updated_by g; RM updated_by f|>) ∧
  (∀r g f.
       r with <|RM updated_by f; R1 updated_by g|> =
       r with <|R1 updated_by g; RM updated_by f|>) ∧
  (∀r g f.
       r with <|RM updated_by f; RP updated_by g|> =
       r with <|RP updated_by g; RM updated_by f|>) ∧
  (∀r g f.
       r with <|RN updated_by f; R0 updated_by g|> =
       r with <|R0 updated_by g; RN updated_by f|>) ∧
  (∀r g f.
       r with <|RN updated_by f; R1 updated_by g|> =
       r with <|R1 updated_by g; RN updated_by f|>) ∧
  (∀r g f.
       r with <|RN updated_by f; RP updated_by g|> =
       r with <|RP updated_by g; RN updated_by f|>) ∧
  ∀r g f.
      r with <|RN updated_by f; RM updated_by g|> =
      r with <|RM updated_by g; RN updated_by f|>
ring_fupdcanon_comp
⊢ ((∀g f. R1_fupd f ∘ R0_fupd g = R0_fupd g ∘ R1_fupd f) ∧
   ∀h g f. R1_fupd f ∘ R0_fupd g ∘ h = R0_fupd g ∘ R1_fupd f ∘ h) ∧
  ((∀g f. RP_fupd f ∘ R0_fupd g = R0_fupd g ∘ RP_fupd f) ∧
   ∀h g f. RP_fupd f ∘ R0_fupd g ∘ h = R0_fupd g ∘ RP_fupd f ∘ h) ∧
  ((∀g f. RP_fupd f ∘ R1_fupd g = R1_fupd g ∘ RP_fupd f) ∧
   ∀h g f. RP_fupd f ∘ R1_fupd g ∘ h = R1_fupd g ∘ RP_fupd f ∘ h) ∧
  ((∀g f. RM_fupd f ∘ R0_fupd g = R0_fupd g ∘ RM_fupd f) ∧
   ∀h g f. RM_fupd f ∘ R0_fupd g ∘ h = R0_fupd g ∘ RM_fupd f ∘ h) ∧
  ((∀g f. RM_fupd f ∘ R1_fupd g = R1_fupd g ∘ RM_fupd f) ∧
   ∀h g f. RM_fupd f ∘ R1_fupd g ∘ h = R1_fupd g ∘ RM_fupd f ∘ h) ∧
  ((∀g f. RM_fupd f ∘ RP_fupd g = RP_fupd g ∘ RM_fupd f) ∧
   ∀h g f. RM_fupd f ∘ RP_fupd g ∘ h = RP_fupd g ∘ RM_fupd f ∘ h) ∧
  ((∀g f. RN_fupd f ∘ R0_fupd g = R0_fupd g ∘ RN_fupd f) ∧
   ∀h g f. RN_fupd f ∘ R0_fupd g ∘ h = R0_fupd g ∘ RN_fupd f ∘ h) ∧
  ((∀g f. RN_fupd f ∘ R1_fupd g = R1_fupd g ∘ RN_fupd f) ∧
   ∀h g f. RN_fupd f ∘ R1_fupd g ∘ h = R1_fupd g ∘ RN_fupd f ∘ h) ∧
  ((∀g f. RN_fupd f ∘ RP_fupd g = RP_fupd g ∘ RN_fupd f) ∧
   ∀h g f. RN_fupd f ∘ RP_fupd g ∘ h = RP_fupd g ∘ RN_fupd f ∘ h) ∧
  (∀g f. RN_fupd f ∘ RM_fupd g = RM_fupd g ∘ RN_fupd f) ∧
  ∀h g f. RN_fupd f ∘ RM_fupd g ∘ h = RM_fupd g ∘ RN_fupd f ∘ h
ring_component_equality
⊢ ∀r1 r2.
      r1 = r2 ⇔
      r1.R0 = r2.R0 ∧ r1.R1 = r2.R1 ∧ r1.RP = r2.RP ∧ r1.RM = r2.RM ∧
      r1.RN = r2.RN
ring_updates_eq_literal
⊢ ∀r a0 a f1 f0 f.
      r with <|R0 := a0; R1 := a; RP := f1; RM := f0; RN := f|> =
      <|R0 := a0; R1 := a; RP := f1; RM := f0; RN := f|>
ring_literal_nchotomy
⊢ ∀r. ∃a0 a f1 f0 f. r = <|R0 := a0; R1 := a; RP := f1; RM := f0; RN := f|>
FORALL_ring
⊢ ∀P.
      (∀r. P r) ⇔
      ∀a0 a f1 f0 f. P <|R0 := a0; R1 := a; RP := f1; RM := f0; RN := f|>
EXISTS_ring
⊢ ∀P.
      (∃r. P r) ⇔
      ∃a0 a f1 f0 f. P <|R0 := a0; R1 := a; RP := f1; RM := f0; RN := f|>
ring_literal_11
⊢ ∀a01 a1 f11 f01 f1 a02 a2 f12 f02 f2.
      <|R0 := a01; R1 := a1; RP := f11; RM := f01; RN := f1|> =
      <|R0 := a02; R1 := a2; RP := f12; RM := f02; RN := f2|> ⇔
      a01 = a02 ∧ a1 = a2 ∧ f11 = f12 ∧ f01 = f02 ∧ f1 = f2
datatype_ring
⊢ DATATYPE (record ring R0 R1 RP RM RN)
ring_11
⊢ ∀a0 a1 a2 a3 a4 a0' a1' a2' a3' a4'.
      ring a0 a1 a2 a3 a4 = ring a0' a1' a2' a3' a4' ⇔
      a0 = a0' ∧ a1 = a1' ∧ a2 = a2' ∧ a3 = a3' ∧ a4 = a4'
ring_nchotomy
⊢ ∀rr. ∃a a0 f f0 f1. rr = ring a a0 f f0 f1
ring_Axiom
⊢ ∀f. ∃fn. ∀a0 a1 a2 a3 a4. fn (ring a0 a1 a2 a3 a4) = f a0 a1 a2 a3 a4
ring_induction
⊢ ∀P. (∀a a0 f f0 f1. P (ring a a0 f f0 f1)) ⇒ ∀r. P r
ring_case_cong
⊢ ∀M M' f.
      M = M' ∧
      (∀a0 a1 a2 a3 a4.
           M' = ring a0 a1 a2 a3 a4 ⇒ f a0 a1 a2 a3 a4 = f' a0 a1 a2 a3 a4) ⇒
      ring_CASE M f = ring_CASE M' f'
ring_case_eq
⊢ ring_CASE x f = v ⇔
  ∃a a0 f' f0 f1. x = ring a a0 f' f0 f1 ∧ f a a0 f' f0 f1 = v
plus_sym
⊢ ∀r. is_ring r ⇒ ∀n m. r.RP n m = r.RP m n
plus_assoc
⊢ ∀r. is_ring r ⇒ ∀n m p. r.RP n (r.RP m p) = r.RP (r.RP n m) p
mult_sym
⊢ ∀r. is_ring r ⇒ ∀n m. r.RM n m = r.RM m n
mult_assoc
⊢ ∀r. is_ring r ⇒ ∀n m p. r.RM n (r.RM m p) = r.RM (r.RM n m) p
plus_zero_left
⊢ ∀r. is_ring r ⇒ ∀n. r.RP r.R0 n = n
mult_one_left
⊢ ∀r. is_ring r ⇒ ∀n. r.RM r.R1 n = n
opp_def
⊢ ∀r. is_ring r ⇒ ∀n. r.RP n (r.RN n) = r.R0
distr_left
⊢ ∀r. is_ring r ⇒ ∀n m p. r.RM (r.RP n m) p = r.RP (r.RM n p) (r.RM m p)
plus_zero_right
⊢ ∀r. is_ring r ⇒ ∀n. r.RP n r.R0 = n
mult_zero_left
⊢ ∀r. is_ring r ⇒ ∀n. r.RM r.R0 n = r.R0
mult_zero_right
⊢ ∀r. is_ring r ⇒ ∀n. r.RM n r.R0 = r.R0
ring_is_semi_ring
⊢ ∀r. is_ring r ⇒ is_semi_ring (semi_ring_of r)
mult_one_right
⊢ ∀r. is_ring r ⇒ ∀n. r.RM n r.R1 = n
neg_mult
⊢ ∀r. is_ring r ⇒ ∀a b. r.RM (r.RN a) b = r.RN (r.RM a b)