- GSUM_ind
-
⊢ ∀P.
(∀n f. P (n,0) f) ∧ (∀n m f. P (n,m) f ⇒ P (n,SUC m) f) ⇒
∀v v1 v2. P (v,v1) v2
- GSUM_def
-
⊢ (∀n f. GSUM (n,0) f = 0) ∧
∀n m f. GSUM (n,SUC m) f = GSUM (n,m) f + f (n + m)
- GSUM_def_compute
-
⊢ (∀n f. GSUM (n,0) f = 0) ∧
(∀n m f.
GSUM (n,NUMERAL (BIT1 m)) f =
GSUM (n,NUMERAL (BIT1 m) − 1) f + f (n + (NUMERAL (BIT1 m) − 1))) ∧
∀n m f.
GSUM (n,NUMERAL (BIT2 m)) f =
GSUM (n,NUMERAL (BIT1 m)) f + f (n + NUMERAL (BIT1 m))
- GSUM_1
-
⊢ ∀m f. GSUM (m,1) f = f m
- GSUM_ADD
-
⊢ ∀p m n f. GSUM (p,m + n) f = GSUM (p,m) f + GSUM (p + m,n) f
- GSUM_ZERO
-
⊢ ∀p n f. (∀m. p ≤ m ∧ m < p + n ⇒ f m = 0) ⇔ GSUM (p,n) f = 0
- GSUM_MONO
-
⊢ ∀p m n f. m ≤ n ∧ f (p + n) ≠ 0 ⇒ GSUM (p,m) f < GSUM (p,SUC n) f
- GSUM_LESS
-
⊢ ∀p m n f.
(∃q. m + p ≤ q ∧ q < n + p ∧ f q ≠ 0) ⇔ GSUM (p,m) f < GSUM (p,n) f
- GSUM_EQUAL
-
⊢ ∀p m n f.
GSUM (p,m) f = GSUM (p,n) f ⇔
m ≤ n ∧ (∀q. p + m ≤ q ∧ q < p + n ⇒ f q = 0) ∨
n < m ∧ ∀q. p + n ≤ q ∧ q < p + m ⇒ f q = 0
- GSUM_FUN_EQUAL
-
⊢ ∀p n f g. (∀x. p ≤ x ∧ x < p + n ⇒ f x = g x) ⇒ GSUM (p,n) f = GSUM (p,n) g
- SUM_def_compute
-
⊢ (∀f. SUM 0 f = 0) ∧
(∀m f.
SUM (NUMERAL (BIT1 m)) f =
SUM (NUMERAL (BIT1 m) − 1) f + f (NUMERAL (BIT1 m) − 1)) ∧
∀m f.
SUM (NUMERAL (BIT2 m)) f =
SUM (NUMERAL (BIT1 m)) f + f (NUMERAL (BIT1 m))
- SUM
-
⊢ ∀m f. SUM m f = GSUM (0,m) f
- SUM_1
-
⊢ ∀f. SUM 1 f = f 0
- SUM_MONO
-
⊢ ∀m n f. m ≤ n ∧ f n ≠ 0 ⇒ SUM m f < SUM (SUC n) f
- SUM_LESS
-
⊢ ∀m n f. (∃q. m ≤ q ∧ q < n ∧ f q ≠ 0) ⇔ SUM m f < SUM n f
- SUM_EQUAL
-
⊢ ∀m n f.
SUM m f = SUM n f ⇔
m ≤ n ∧ (∀q. m ≤ q ∧ q < n ⇒ f q = 0) ∨
n < m ∧ ∀q. n ≤ q ∧ q < m ⇒ f q = 0
- SUM_FUN_EQUAL
-
⊢ ∀f g. (∀x. x < n ⇒ f x = g x) ⇒ SUM n f = SUM n g
- SUM_ZERO
-
⊢ ∀n f. (∀m. m < n ⇒ f m = 0) ⇔ SUM n f = 0
- SUM_FOLDL
-
⊢ ∀n f. SUM n f = FOLDL (λx n. f n + x) 0 (COUNT_LIST n)